package octez-plonk
Plonk zero-knowledge proving system
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/octez-plonk.distribution/kzg_pack.ml.html
Source file kzg_pack.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Plonk.Bls open Plonk.Utils module SMap = Plonk.SMap module type Super_PC_sig = sig include Kzg.PC_for_distribution_sig type prover_aux = {r : Scalar.t; s_list : Scalar.t SMap.t list} val prove_super_aggregation : Public_parameters.prover -> transcript -> Poly.t SMap.t list -> Commitment.prover_aux list -> query list -> Scalar.t SMap.t SMap.t list -> (proof * prover_aux) * transcript val verify_super_aggregation : Public_parameters.verifier -> transcript -> Commitment.t list -> query list -> Scalar.t SMap.t list -> proof -> bool * Scalar.t * transcript end (** Extension of the KZG_pack implementation with additional types and functions used in by Distributed_prover *) module Kzg_pack_impl = struct module Pack = Aggregation.Pack module PC = Kzg.Kzg_impl module BasePC = Aggregation.Polynomial_commitment.Make_impl (PC) module Commitment = struct include BasePC.Commitment let recombine l = List.fold_left Pack.combine (List.hd l) (List.tl l) let recombine_prover_aux l = let cm = PC.Commitment.recombine (List.map fst l) in let p_a = PC.Commitment.recombine_prover_aux (List.map snd l) in (cm, p_a) let empty = Pack.empty_commitment let empty_prover_aux = (PC.Commitment.empty, PC.Commitment.empty_prover_aux) end include (BasePC : module type of BasePC with module Commitment := Commitment) type worker_msg = Scalar.t * string list list [@@deriving repr] type main_prover_msg = Poly.t list * Commitment.prover_aux list [@@deriving repr] type main_prover_state = Public_parameters.prover * transcript * Scalar.t * query list * Scalar.t SMap.t list * main_prover_msg type partial_prover_aux = {r : Scalar.t; s_list : Scalar.t SMap.t list} let merge_answers : answer list -> answer = let open SMap in List.fold_left (union (fun _k m1 m2 -> Some (union_disjoint m1 m2))) empty let distributed_prove_worker f_map_list prover_aux_list (r, poly_keys_list) = let gen_powers r l = List.mapi (fun i x -> (x, Scalar.pow r @@ Z.of_int i)) l |> SMap.of_list in let r_powers_list = List.map (gen_powers r) poly_keys_list in let f_list = List.map2 (fun f_map r_map -> let polys = SMap.bindings f_map in let coeffs = List.map (fun (name, _) -> SMap.find name r_map) polys in Poly.linear (List.map snd polys) coeffs) f_map_list r_powers_list in (f_list, prover_aux_list) let distributed_expand_transcript transcript query_list answer_list = let transcript = Transcript.list_expand query_t query_list transcript in Transcript.list_expand answer_t answer_list transcript let distributed_prove_main1 (pp : Public_parameters.prover) transcript query_list answer_list secret_list prover_aux_list : worker_msg * main_prover_state = let r, transcript = Fr_generation.random_fr transcript in let s_list = List.map (batch_answers r) answer_list in let get_keys map_map = SMap.fold (fun _ m acc -> SMap.union (fun _ _ x -> Some x) m acc) map_map SMap.empty |> SMap.bindings |> List.map fst in let poly_keys_list = List.map get_keys answer_list in let worker_message = (r, poly_keys_list) in (* The main thread simulates a worker, since it is the only one who knows the information about t_map, g_map, plook_map. We need to pad a dummy secret and a dummy prover_aux at the end, corresponding to f_map, which the main thread does not have information about. *) let main_msg = distributed_prove_worker secret_list prover_aux_list worker_message in let state = (pp, transcript, r, query_list, s_list, main_msg) in (worker_message, state) let distributed_prove_main2 ((pp, transcript, r, query_list, s_list, main_msg) : main_prover_state) worker_msg_list = let worker_msg_list = main_msg :: worker_msg_list in let f_list_list = List.map fst worker_msg_list in let f_list = Plonk.List.mapn (List.fold_left Poly.add Poly.zero) f_list_list in let prover_aux_list_list = List.map snd worker_msg_list in let prover_aux_list = Plonk.List.mapn Commitment.recombine_prover_aux prover_aux_list_list in (* [cmts_list] is a list of G1.t SMap.t, containing the PC commitments to every polynomial (note that PC.Commitment.t = Bls12_381.G1.t SMap.t) *) let cmts_list = List.map (fun (cmts, _prover_aux) -> List.map snd @@ SMap.bindings cmts |> Array.of_list) prover_aux_list in (* [packed_values] has type [G1.t list] and it is the result of batching each map in [cmt_list] with powers of [r]. [pack_proof] asserts that [packed_values] was correctly computed. *) let (packed_values, pack_proof), transcript = Pack.prove pp.pp_pack_prover transcript r cmts_list in (* prepare [f_list] and [s_list], the batched version of [f_map_list] polys and [answer_list] (using randomness [r]) by selecting a dummy name for them [string_of_int i] in order to call the underlying PC *) let f_map_list = List.mapi (fun i l -> SMap.singleton (string_of_int i) l) f_list in let s_map_list = List.mapi (fun i m -> SMap.map (fun s -> SMap.singleton (string_of_int i) s) m) s_list in let prover_aux_list = List.map snd prover_aux_list in (* call the underlying PC prover on the batched polynomials/evaluations the verifier will verify such proof using [packed_values] as the commitments *) let pc_proof, transcript = PC.prove pp.pp_pc_prover transcript f_map_list prover_aux_list query_list s_map_list in let proof = {pc_proof; packed_values; pack_proof} in let transcript = Transcript.expand proof_t proof transcript in (proof, transcript, {s_list; r}) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>