package octez-plonk
Plonk zero-knowledge proving system
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/octez-plonk.distribution/main_protocol.ml.html
Source file main_protocol.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Plonk.Bls open Plonk.Utils open Plonk.Identities module SMap = Plonk.SMap let nb_wires = Plompiler.Csir.nb_wires_arch module type S = sig module PP : Polynomial_protocol.S type proof = { perm_and_plook : PP.PC.Commitment.t; wires_cm : PP.PC.Commitment.t; pp_proof : PP.proof; } include Plonk.Main_protocol_intf.S with type proof := proof type gate_randomness = { beta_perm : Scalar.t; gamma_perm : Scalar.t; beta_plook : Scalar.t; gamma_plook : Scalar.t; beta_rc : Scalar.t; gamma_rc : Scalar.t; delta : Scalar.t; } val build_gates_randomness : bytes -> gate_randomness * bytes val filter_prv_pp_circuits : prover_public_parameters -> 'a SMap.t -> prover_public_parameters val hash_verifier_inputs : verifier_inputs -> bytes module Prover : sig val commit_to_wires : ?all_keys:string list -> ?shifts_map:(int * int) SMap.t -> prover_public_parameters -> circuit_prover_input list SMap.t -> Evaluations.t SMap.t list SMap.t * Poly.t SMap.t list SMap.t * Poly.t SMap.t option list SMap.t * Poly.t SMap.t * Input_commitment.public * PP.PC.Commitment.prover_aux val build_evaluations : prover_public_parameters -> Evaluations.polynomial SMap.t -> Evaluations.t SMap.t val build_f_map_plook : ?shifts_map:(int * int) SMap.t -> prover_public_parameters -> gate_randomness -> Evaluations.t SMap.t list SMap.t -> Poly.t SMap.t val build_f_map_perm : prover_public_parameters -> gate_randomness -> Evaluations.t SMap.t SMap.t -> Poly.t SMap.t (* builds the range check proof polynomials *) val build_f_map_rc_1 : ?shifts_map:(int * int) SMap.t -> prover_public_parameters -> gate_randomness -> Evaluations.t SMap.t list SMap.t -> Evaluations.t SMap.t SMap.t -> Poly.t SMap.t * Evaluations.t SMap.t SMap.t (* builds the range check’s permutation proof polynomials *) val build_f_map_rc_2 : prover_public_parameters -> gate_randomness -> Evaluations.t SMap.t SMap.t -> Poly.t SMap.t val build_perm_rc2_identities : prover_public_parameters -> gate_randomness -> prover_identities val build_gates_plook_rc1_identities : ?shifts_map:(int * int) SMap.t -> prover_public_parameters -> gate_randomness -> circuit_prover_input list SMap.t -> prover_identities end type worker_inputs [@@deriving repr] val split_inputs_map : nb_workers:int -> circuit_prover_input list SMap.t -> worker_inputs SMap.t list type commit_to_wires_reply = PP.PC.Commitment.t [@@deriving repr] (* shifts_maps binds circuits names to pairs of integers. 'c1' -> (7, 20) means that 20 proofs are expected for circuit 'c1' and there must be a shift of 7 in indexing considering the worker is starting at proof No. 7 *) type commit_to_wires_remember = { all_f_wires : Poly.t SMap.t; wires_list_map : Evaluations.t SMap.t list SMap.t; inputs_map : circuit_prover_input list SMap.t; shifts_map : (int * int) SMap.t; f_wires : Poly.t SMap.t list SMap.t; cm_aux_wires : PP.PC.Commitment.prover_aux; } val worker_commit_to_wires : prover_public_parameters -> worker_inputs SMap.t -> commit_to_wires_reply * commit_to_wires_remember type commit_to_plook_rc_reply = { batched_wires_map : Evaluations.t SMap.t SMap.t; cmt : PP.PC.Commitment.t; f_map : Poly.t SMap.t; prover_aux : PP.PC.Commitment.prover_aux; } [@@deriving repr] type commit_to_plook_rc_remember = { beta_plook : scalar; gamma_plook : scalar; beta_rc : scalar; gamma_rc : scalar; } val commit_to_plook_rc : prover_public_parameters -> (int * int) SMap.t -> bytes -> Evaluations.t SMap.t list SMap.t -> commit_to_plook_rc_reply * commit_to_plook_rc_remember val batch_evaluated_ids : alpha:scalar -> Evaluations.t SMap.t -> string list -> Evaluations.t val kzg_eval_at_x : prover_public_parameters -> PP.transcript -> (PP.PC.secret * PP.PC.Commitment.prover_aux) list -> scalar -> PP.PC.answer list val make_secret : prover_public_parameters -> Poly.t SMap.t * PP.PC.Commitment.prover_aux -> (Poly.t SMap.t * PP.PC.Commitment.prover_aux) list val make_eval_points : prover_public_parameters -> eval_point list list * eval_point list list val get_srs : prover_public_parameters -> PP.prover_public_parameters (** Returns (g, n, nb_t), where n is the size of the circuit padded to the next power of two, g is a primitive n-th root of unity, & nb_t is the number of T polynomials in the answers *) val get_gen_n_nbt : prover_public_parameters -> scalar * int * int val get_transcript : prover_public_parameters -> bytes val check_no_zk : prover_public_parameters -> unit end (* [build_all_keys strs shifts_map] returns a list of prefixed [strs], deduced from the [shifts_map] (that contains circuits names binded with, among others, the number of proofs) that corresponds to all the names of the [strs] polynomials that will be committed for the proof *) let build_all_keys names shifts_map = let build_all_names prefix n name = List.init n (fun i -> SMap.Aggregation.add_prefix ~n ~i prefix name) in SMap.mapi (fun prefix (_i, n) -> List.concat_map (build_all_names prefix n) names |> List.sort String.compare) shifts_map |> SMap.values |> List.concat module Common (PP : Polynomial_protocol.S) = struct open Plonk.Main_protocol.Make_impl (PP) open Prover module Commitment = PP.PC.Commitment type commit_to_wires_reply = Commitment.t [@@deriving repr] type worker_inputs = {inputs : circuit_prover_input list; shift : int * int} [@@deriving repr] let split_inputs_map ~nb_workers inputs_map = let list_range i1 i2 = List.filteri (fun i _ -> i1 <= i && i < i2) in List.map (fun i -> SMap.map (fun l -> let n = List.length l in let chunk_size = Z.(cdiv (of_int n) (of_int nb_workers) |> to_int) in let inputs = list_range (chunk_size * i) (chunk_size * (i + 1)) l in let shift = (chunk_size * i, n) in {inputs; shift}) inputs_map) (List.init nb_workers Fun.id) type commit_to_plook_rc_reply = { batched_wires_map : Evaluations.t SMap.t SMap.t; cmt : Commitment.t; f_map : Poly.t SMap.t; prover_aux : Commitment.prover_aux; } [@@deriving repr] type commit_to_plook_rc_remember = { beta_plook : scalar; gamma_plook : scalar; beta_rc : scalar; gamma_rc : scalar; } type commit_to_wires_remember = { all_f_wires : Poly.t SMap.t; wires_list_map : Evaluations.t SMap.t list SMap.t; inputs_map : circuit_prover_input list SMap.t; shifts_map : (int * int) SMap.t; f_wires : Poly.t SMap.t list SMap.t; cm_aux_wires : Commitment.prover_aux; } let worker_commit_to_wires pp worker_inputs_map = let inputs_map = SMap.map (fun wi -> wi.inputs) worker_inputs_map in let shifts_map = SMap.map (fun wi -> wi.shift) worker_inputs_map in let all_keys = build_all_keys (wire_names nb_wires) shifts_map in let wires_list_map, f_wires, _, all_f_wires, cm_wires, cm_aux_wires = commit_to_wires ~all_keys ~shifts_map pp inputs_map in ( cm_wires, { all_f_wires; wires_list_map; inputs_map; shifts_map; f_wires; cm_aux_wires; } ) let commit_to_plook_rc pp shifts_map transcript f_wires_list_map = let rd, _transcript = build_gates_randomness transcript in let batched_wires_map = Perm.Shared_argument.build_batched_wires_values ~delta:rd.delta ~wires:f_wires_list_map in (* ******************************************* *) let f_map_plook = build_f_map_plook ~shifts_map pp rd f_wires_list_map in (* FIXME https://gitlab.com/nomadic-labs/cryptography/privacy-team/-/issues/222 Handle multiproofs *) (* let f_map_rc, batched_wires_map = Prover.build_f_map_range_checks ~shifts_map pp rd f_wires_list_map batched_wires_map in let f_map = SMap.union_disjoint f_map_plook f_map_rc in *) let f_map = f_map_plook in (* commit to the plookup polynomials *) let cmt, prover_aux = (* FIXME: implement Plookup *) let all_keys = build_all_keys ["plook"; "RC"] shifts_map in PP.PC.Commitment.commit ~all_keys pp.common_pp.pp_public_parameters f_map in ( {batched_wires_map; cmt; f_map; prover_aux}, { beta_plook = rd.beta_plook; gamma_plook = rd.gamma_plook; beta_rc = rd.beta_rc; gamma_rc = rd.gamma_rc; } ) let batch_evaluated_ids ~alpha evaluated_ids all_ids_keys = let powers_map = SMap.of_list @@ List.mapi (fun i s -> (s, i)) all_ids_keys in let ids_keys, evaluations = List.split @@ SMap.bindings evaluated_ids in let powers = List.map (fun s -> SMap.find s powers_map) ids_keys |> List.map (fun i -> Scalar.pow alpha @@ Z.of_int i) in Evaluations.linear_c ~evaluations ~linear_coeffs:powers () let kzg_eval_at_x pp transcript secrets_worker generator = let eval_points_worker = [List.hd @@ List.rev @@ pp.common_pp.eval_points] in let x, _transcript = Fr_generation.random_fr transcript in let polys_list_worker = List.map fst secrets_worker in let query_list_worker = List.map (convert_eval_points ~generator ~x) eval_points_worker in List.map2 PP.PC.evaluate polys_list_worker query_list_worker (* Same as Plonk.Main_protocol.build_batched_witness_poly, but the IFFT version every times. Because I don’t know how to use f_wires in distributed_prover *) let build_batched_witness_polys_bis pp batched_witnesses = let batched_witness_polys = SMap.map (fun batched_witness -> (* we apply an IFFT on the batched witness *) Perm.Shared_argument.batched_wires_poly_of_batched_wires pp batched_witness (Scalar.zero, [])) batched_witnesses in batched_witness_polys |> SMap.Aggregation.smap_of_smap_smap let pp nb_workers randomness inputs_map replies = let recombine_batched_wires pieces = (* we want the last worker to be first to apply Horner's method *) let pieces = List.rev pieces in List.fold_left (fun acc m -> SMap.union (fun circuit_name witness_acc witness_m -> let n = List.length (SMap.find circuit_name inputs_map) in let chunk_size = Z.(cdiv (of_int n) (of_int nb_workers)) in let delta_factor = Scalar.pow randomness.delta chunk_size in let sum = SMap.mapi (fun i w_acc -> let w = SMap.find i witness_m in Evaluations.(add w (mul_by_scalar delta_factor w_acc))) witness_acc in Some sum) acc m) (List.hd pieces) (List.tl pieces) in let batched_wires_map = recombine_batched_wires (List.map (fun r -> r.batched_wires_map) replies) in let open Prover in let f_map_perm = build_f_map_perm pp randomness batched_wires_map in let evaluated_perm_ids = let evaluations = let batched_wires_polys = build_batched_witness_polys_bis (pp.common_pp.zk, pp.common_pp.n, pp.common_pp.domain) batched_wires_map in build_evaluations pp (SMap.union_disjoint f_map_perm batched_wires_polys) in (build_perm_rc2_identities pp randomness) evaluations in let cmt = Commitment.commit pp.common_pp.pp_public_parameters f_map_perm in (f_map_perm, evaluated_perm_ids, cmt) let make_secret pp (f_map, f_prv_aux) = [(pp.common_pp.g_map, pp.common_pp.g_prover_aux); (f_map, f_prv_aux)] let make_eval_points pp = Plonk.List.split_n 2 pp.common_pp.eval_points let get_generator pp = Domain.get pp.common_pp.domain 1 let get_srs pp = pp.common_pp.pp_public_parameters let get_gen_n_nbt pp = ( Domain.get pp.common_pp.domain 1, pp.common_pp.n, pp.common_pp.nb_of_t_chunks ) let get_transcript pp = pp.transcript let check_no_zk pp = if pp.common_pp.zk then failwith "Distribution with ZK is not supported" end module Make (PP : Polynomial_protocol.S) = struct module PP = PP module MP = Plonk.Main_protocol.Make_impl (PP) include (MP : module type of MP with module PP := PP) include Common (PP) end module MakeSuper (PP : Polynomial_protocol.Super) = struct module PP = PP module MP = Aggregation.Main_protocol.Make_impl (PP) include (MP : module type of MP with module PP := PP) include Common (PP) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>