package octez-plonk
Plonk zero-knowledge proving system
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/octez-plonk.aggregation/polynomial_commitment.ml.html
Source file polynomial_commitment.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Plonk open Bls open Utils module type S = sig include Polynomial_commitment.S (** Auxiliary information needed by the prover for the meta-verification in aPlonK *) type prover_aux = {r : Scalar.t; s_list : Scalar.t SMap.t list} val prove_super_aggregation : Public_parameters.prover -> transcript -> Poly.t SMap.t list -> Commitment.prover_aux list -> query list -> Scalar.t SMap.t SMap.t list -> (proof * prover_aux) * transcript val verify_super_aggregation : Public_parameters.verifier -> transcript -> Commitment.t list -> query list -> Scalar.t SMap.t list -> proof -> bool * Scalar.t * transcript end module Make_impl (PC : Polynomial_commitment.S with type Commitment.t = Bls.G1.t SMap.t) = struct type secret = PC.secret type query = PC.query [@@deriving repr] type answer = PC.answer [@@deriving repr] type transcript = PC.transcript module Public_parameters = struct type prover = { pp_pc_prover : PC.Public_parameters.prover; pp_pack_prover : Pack.prover_public_parameters; } [@@deriving repr] type verifier = { pp_pc_verifier : PC.Public_parameters.verifier; pp_pack_verifier : Pack.verifier_public_parameters; } [@@deriving repr] type setup_params = int let setup setup_params srs = let pp_pc_prover, pp_pc_verifier = PC.Public_parameters.setup setup_params srs in let pp_pack_prover, pp_pack_verifier = Pack.setup setup_params (snd srs) in let pp_prover = {pp_pc_prover; pp_pack_prover} in let pp_verifier = {pp_pc_verifier; pp_pack_verifier} in (pp_prover, pp_verifier) let to_bytes d ({pp_pc_prover; pp_pack_prover} : prover) = Utils.Hash.hash_bytes [ PC.Public_parameters.to_bytes d pp_pc_prover; Pack.public_parameters_to_bytes pp_pack_prover; ] end module Commitment = struct type prover_public_parameters = Public_parameters.prover type secret = Poly.t SMap.t type t = Pack.commitment [@@deriving repr] (* [PC.Commitment.t] is required to be [Bls12_381.G1.t SMap.t], containing all the commitments that were packed *) type prover_aux = PC.Commitment.t * PC.Commitment.prover_aux [@@deriving repr] let commit ?all_keys (pp : Public_parameters.prover) f_map = (* Relevant_positions is the list of the indexes of f_map’s elements in the all_keys list. *) let relevant_positions = match all_keys with | None -> List.init (SMap.cardinal f_map) Fun.id | Some ks -> List.mapi (fun i x -> (i, x)) ks |> List.filter_map (fun (i, x) -> Option.map (Fun.const i) (SMap.find_opt x f_map)) in let prover_aux = PC.Commitment.commit pp.pp_pc_prover f_map in let cm_list = SMap.values (fst prover_aux) in let pack_cmt = Pack.partial_commit ~relevant_positions pp.pp_pack_prover (Array.of_list cm_list) in (pack_cmt, prover_aux) let cardinal = Pack.commitment_cardinal let rename _f cmt = cmt end type proof = { pc_proof : PC.proof; packed_values : Pack.packed list; pack_proof : Pack.proof; } [@@deriving repr] type prover_aux = {r : Scalar.t; s_list : Scalar.t SMap.t list} let batch_polys r map = let polys = SMap.values map in Poly.linear_with_powers polys r let batch_answers r = SMap.map (fun m -> Fr_generation.batch r @@ SMap.values m) let evaluate = PC.evaluate (* compute P := cmt₀ + r cmt₁ + r² cmt₂ + ... for every group of commitments in the list [prover_aux_list], and common randomness r (freshly sampled); such P values are returned as [packed_values], together with a proof [packed_proof] of their correctness; also, on input a list of evaluations [answer_list], at the requested points in [query_list], produce a proof of their validity: such proof is a PC proof (for every group) on the aggregatted commitment P with respect to the corresponding aggregated evaluations (we thus batch [answer_list] with [r] similarly) *) let prove_pack (pp : Public_parameters.prover) transcript f_map_list (prover_aux_list : Commitment.prover_aux list) query_list answer_list = let r, transcript = Fr_generation.random_fr transcript in let f_list = List.map (batch_polys r) f_map_list in let s_list = List.map (batch_answers r) answer_list in (* [cmts_list] is a list of G1.t SMap.t, containing the PC commitments to every polynomial (note that PC.Commitment.t = Bls12_381.G1.t SMap.t) *) let cmts_list = List.map (fun (cmts, _prover_aux) -> SMap.values cmts |> Array.of_list) prover_aux_list in (* [packed_values] has type [G1.t list] and it is the result of batching each map in [cmt_list] with powers of [r]. [pack_proof] asserts that [packed_values] was correctly computed. *) let (packed_values, pack_proof), transcript = Pack.prove pp.pp_pack_prover transcript r cmts_list in (* prepare [f_list] and [s_list], the batched version of [f_map_list] polys and [answer_list] (using randomness [r]) by selecting a dummy name for them [string_of_int i] in order to call the underlying PC *) let f_map_list = List.mapi (fun i l -> SMap.singleton (string_of_int i) l) f_list in let s_map_list = List.mapi (fun i m -> SMap.map (fun s -> SMap.singleton (string_of_int i) s) m) s_list in let prover_aux_list = List.map snd prover_aux_list in (* call the underlying PC prover on the batched polynomials/evaluations the verifier will verify such proof using [packed_values] as the commitments *) let pc_proof, transcript = PC.prove pp.pp_pc_prover transcript f_map_list prover_aux_list query_list s_map_list in let proof = {pc_proof; packed_values; pack_proof} in let transcript = Transcript.expand proof_t proof transcript in ((proof, {r; s_list}), transcript) let prove (pp : Public_parameters.prover) transcript f_map_list (prover_aux_list : Commitment.prover_aux list) query_list answer_list = let transcript = Transcript.list_expand query_t query_list transcript in let transcript = Transcript.list_expand answer_t answer_list transcript in let (proof, _), transcript = prove_pack pp transcript f_map_list prover_aux_list query_list answer_list in (proof, transcript) let prove_super_aggregation (pp : Public_parameters.prover) transcript f_map_list (prover_aux_list : Commitment.prover_aux list) query_list answer_list = let transcript = Transcript.list_expand query_t query_list transcript in prove_pack pp transcript f_map_list prover_aux_list query_list answer_list let verify_pack (pp : Public_parameters.verifier) r transcript cmt_list query_list s_list proof = (* verify that the [packed_values] are correct, they will be used as the commitments for the PC proof of (batched) evaluations *) let pack_ok, transcript = Pack.verify pp.pp_pack_verifier transcript cmt_list r (proof.packed_values, proof.pack_proof) in (* batch the evaluations using [r] and prepare the query to the PC verifier by selecting the default dummy names [string_of_int i] names *) let s_map_list = List.mapi (fun i m -> SMap.map (fun s -> SMap.singleton (string_of_int i) s) m) s_list in let cmt_map_list = List.mapi (fun i l -> SMap.singleton (string_of_int i) l) proof.packed_values in (* verify that the batched evaluations are correct *) let pc_ok, transcript = PC.verify pp.pp_pc_verifier transcript cmt_map_list query_list s_map_list proof.pc_proof in (pack_ok && pc_ok, Transcript.expand proof_t proof transcript) let verify (pp : Public_parameters.verifier) transcript cmt_list query_list s_map_list proof = let transcript = Transcript.list_expand query_t query_list transcript in let transcript = Transcript.list_expand answer_t s_map_list transcript in let r, transcript = Fr_generation.random_fr transcript in let s_list = List.map (batch_answers r) s_map_list in verify_pack pp r transcript cmt_list query_list s_list proof let verify_super_aggregation (pp : Public_parameters.verifier) transcript cmt_list query_list s_list proof = let transcript = Transcript.list_expand query_t query_list transcript in let r, transcript = Fr_generation.random_fr transcript in let ok, transcript = verify_pack pp r transcript cmt_list query_list s_list proof in (ok, r, transcript) end module Make : functor (PC : Polynomial_commitment.S with type Commitment.t = Bls.G1.t SMap.t) -> S = Make_impl include Make (Polynomial_commitment.Kzg_impl)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>