package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plonk/cq.ml.html
Source file cq.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2023 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (* This file implements Cq, a lookup protocol described in https://eprint.iacr.org/2022/1763.pdf, in which the prover work is independant of the size of the table In the code, we call n the size of the table (N), & k the size of the wire to check (n). TODO https://gitlab.com/tezos/tezos/-/issues/6070 - the setup is currently computed in O(N²) while it could be computed in O(NlogN) with Kate amortized - be able to select the wire’s value to lookup - integrate to PlonK - integrate to aPlonK *) open Kzg.Bls open Identities open Kzg.Utils module Degree_check = Kzg.Degree_check.G1_proof module type Cq_sig = sig exception Entry_not_in_table type prover_public_parameters type verifier_public_parameters type proof val setup : srs:Srs_g1.t * Srs_g2.t -> wire_size:int -> table:S.t array list -> prover_public_parameters * verifier_public_parameters val prove : prover_public_parameters -> Transcript.t -> S.t array SMap.t list -> proof * Transcript.t val verify : verifier_public_parameters -> Transcript.t -> proof -> bool * Transcript.t end module Internal = struct open Utils module PC = Kzg.Polynomial_commitment module ISet = Set.Make (Int) module IMap = Map.Make (Int) exception Entry_not_in_table type transcript = bytes type prover_public_parameters = { (* size of the table (= N in the paper) *) n : int; (* precomputed domain for the wires of the size of the wires *) domain_k : Domain.t; (* domain twice as large as the previous one (for poly multiplication) *) domain_2k : Domain.t; (* the table as a list of scalar_maps to be more efficient for searching in the prover *) table : ISet.t Scalar_map.t list; (* N kzg commitments for lagrange polynomials L_i *) cms_lagrange : G1.t array; (* N kzg commitments for (Li - Li(0))/X *) cms_lagrange_0 : G1.t array; (* N kzg commitments for Qi = (Li × (T - ti)) / X^N - 1 *) q : G1.t array list; (* prover public parameters for commitment *) pc : PC.Public_parameters.prover; } type verifier_public_parameters = { (* size of the table (= N in the paper) *) n : int; (* size of the wires (= k in the paper) *) k : int; (* first element of the SRS_2 *) srs2_0 : G2.t; (* sencond element of the SRS_2 *) srs2_1 : G2.t; (* (N-1-k+2) of the SRS_2 *) srs2_N_1_k_2 : G2.t; (* commitment of the table *) cm_table : G2.t list; (* commitment of the polynomial X^N - 1 *) cm_zv : G2.t; (* verifier public parameters for commitment *) pc : PC.Public_parameters.verifier; } type proof = { (* commitments *) cm_f : PC.Commitment.t; cm_f_agg : PC.Commitment.t; cm_a : PC.Commitment.t; cm_b0 : PC.Commitment.t; cm_qa : PC.Commitment.t; cm_m : PC.Commitment.t; cm_p : Degree_check.Proof.t; cm_b0_qb_f : PC.Commitment.t; (* evaluations *) a0 : Scalar.t list; b0y : Scalar.t SMap.t; fy : Scalar.t SMap.t; fy_agg : Scalar.t SMap.t; (* proofs *) pc : PC.proof; cm_a0 : G1.t; } (* Wires polynomial *) let f_name = "f" (* m polynomial : i-th coefficient is the number of occurences of t_i in the corresponding wire *) let m_name = "m" (* A polynomial : i-th coefficient is m_i/(t_i + β) *) let a_name = "a" (* Q_A polynomial : (A×(T+β) - m)/(X^N - 1) *) let qa_name = "qa" (* B₀ polynomial : (B(X) - B(0))/X, where B polynomial has i-th coefficient 1/(fi + β) *) let b0_name = "b0" (* Q_B polynomial : (B×(f+β) - 1)/(X^k - 1) (with k = n in the paper) *) let qb_name = "qb" (* P polynomial : B₀×X^(N-1-(k-2)) *) let p_name = "p" (* Wire aggregation polynomial : f₀ + αf₁ + α²f₂ + … *) let f_agg_name = "f_agg" (* This function is used to aggregate commitments for different proofs *) let aggregate_cm cm etas = Kzg.Commitment.Commit.with_affine_array_1 (PC.Commitment.to_map cm |> SMap.values |> Array.of_list) etas (* We don’t need the generator because we don’t evaluate at gX *) let get_pc_query gamma = List.map (convert_eval_points ~generator:Scalar.zero ~x:gamma) [[X]] (* We use PC’s function to commit our polynomials *) let commit1 srs = PC.(Commitment.commit_single (Public_parameters.get_commit_parameters srs)) (* [open_at_0 p] returns (p - p(0))/X *) let open_at_0 p = let q, r = Poly.(division_xn (p - constant (evaluate p Scalar.zero)) 1 Scalar.zero) in assert (Poly.is_zero r) ; q (* This function avoid some lines of code duplication *) let compute_and_commit f list = let m, l = List.map f list |> Array.of_list |> Array.split in (m, Kzg.Commitment.Commit.with_affine_array_1 l m) let setup_prover (n, domain) k (table_arrays, table_polys) pc = let domain_k = Domain.build k in let domain_2k = Domain.build (2 * k) in (* Map that binds scalar to the set of its indices in the table ; converting it to a map allow more efficient research in the table *) let table = List.map (fun t -> fst @@ Array.fold_left (fun (acc, i) fi -> ( Scalar_map.update fi (function | None -> Some (ISet.singleton i) | Some sk -> Some (ISet.add i sk)) acc, i + 1 )) (Scalar_map.empty, 0) t) table_arrays in let lagrange = Array.init n (fun i -> Evaluations.init ~degree:(n - 1) n (fun j -> if j = i then Scalar.one else Scalar.zero) |> Evaluations.interpolation_fft domain) in let cms_lagrange = Array.map (commit1 pc) lagrange in let cms_lagrange_0 = Array.map (fun p -> commit1 pc @@ open_at_0 p) lagrange in let q = List.map2 (fun t_poly t_array -> Array.init n (fun i -> let q, r = Poly.( division_xn (lagrange.(i) * (t_poly - constant t_array.(i))) n Scalar.(negate one)) in if not (Poly.is_zero r) then failwith "Cq.setup_prover : division error." ; commit1 pc q)) table_polys table_arrays in {n; domain_k; domain_2k; table; q; cms_lagrange; cms_lagrange_0; pc} let setup_verifier (_srs1, srs2) n k table_poly pc = (* cm (X^n - 1) *) let cm_zv = try G2.(add (Srs_g2.get srs2 n) (negate one)) with Invalid_argument _ -> raise (Kzg.Commitment.SRS_too_short (Printf.sprintf "Cq.setup_verifier : SRS_2 of size at least (%d + 1) expected \ (size %d received)." n (Srs_g2.size srs2))) in let cm_table = List.map (Kzg.Commitment.Commit.with_srs2 srs2) table_poly in let srs2_0 = Srs_g2.get srs2 0 in let srs2_1 = Srs_g2.get srs2 1 in let srs2_N_1_k_2 = Srs_g2.get srs2 (n - 1 - (k - 2)) in {n; k; srs2_0; srs2_1; srs2_N_1_k_2; cm_table; cm_zv; pc} let setup ~srs ~wire_size ~table = let len_t = Array.length (List.hd table) in let n = 1 lsl Z.(log2up (of_int len_t)) in (* If the table length is not a power of two we pad until n with the first element of the table *) let table = if n = len_t then table else List.map (fun t -> if Array.length t <> len_t then raise (Invalid_argument "Table columns have different lengths.") ; Array.(append t (init (n - len_t) (Fun.const t.(0))))) table in if wire_size > n then raise (Invalid_argument (Printf.sprintf "Wire (size = %d) greater than table (size = %d)." wire_size n)) ; let domain = Domain.build n in let table_polys = List.map (Evaluations.interpolation_fft2 domain) table in let pc_prv, pc_vrf, _ = PC.Public_parameters.setup 0 (srs, srs) in let prv = setup_prover (n, domain) wire_size (table, table_polys) pc_prv in let vrf = setup_verifier srs n wire_size table_polys pc_vrf in (prv, vrf) let compute_m_and_t_sparse pp f_arrays f_agg = let f_arrays = SMap.values f_arrays in (* Returns [(i, mi, ti)], where mi is the number of occurences of ti (aggregated version) in f ; returning lists is ok because we will just iterate on them & they are sparse *) let m_and_t_sparse = Array.fold_left (fun (m_map, i) f_agg -> (* Index in the table of the i-th line of f_arrays *) let idx, _ = (* For each value of the i-th line, we search it in the table and return its indices in the corresponding column of the table the index of the line will be the intersection of the indices for all the values of the line *) List.fold_left2 (fun (acc, first) f t -> match Scalar_map.find_opt f.(i) t with | None -> raise Entry_not_in_table | Some idx -> ((if first then idx else ISet.inter acc idx), false)) (ISet.empty, true) f_arrays pp.table in (* If the set is empty it means that the line is not in the table ; if there is more than one index it means that there is duplication in the table, so we just keep one *) let idx = try ISet.choose idx with Not_found -> raise Entry_not_in_table in (* Note that we add f_agg here to keep track of the aggregated value at each index (what was called ti before) ; we will need it later to compute a ; we use f_agg to avoid recomputation *) ( IMap.update idx (function | None -> Some (1, f_agg) | Some (nb, _) -> Some (nb + 1, f_agg)) m_map, i + 1 )) (IMap.empty, 0) f_agg |> fst |> IMap.to_seq |> List.of_seq |> List.map (fun (i, (m, t)) -> (i, Scalar.of_int m, t)) in let _, cm_m = compute_and_commit (fun (i, m, _) -> (m, pp.cms_lagrange.(i))) m_and_t_sparse in (m_and_t_sparse, cm_m) let compute_a pp beta m_and_t = let a, cm_a = compute_and_commit Scalar.(fun (i, mi, ti) -> (mi / (ti + beta), pp.cms_lagrange.(i))) m_and_t in (List.map2 (fun (i, _, _) a -> (i, a)) m_and_t (Array.to_list a), cm_a) let compute_cm_qa alphas pp a = snd @@ compute_and_commit (fun (i, ai) -> ( ai, fst @@ List.fold_left (fun (acc, j) q -> (G1.(add acc (mul q.(i) alphas.(j))), j + 1)) (G1.zero, 0) pp.q )) a let compute_b beta k domain f = Evaluations.init ~degree:(k - 1) k (fun i -> Scalar.(inverse_exn (f.(i) + beta))) |> Evaluations.interpolation_fft domain let compute_qb pp beta k b f = let f = Evaluations.evaluation_fft pp.domain_2k f in let b = Evaluations.evaluation_fft pp.domain_2k b in let f_beta = Evaluations.linear_c ~evaluations:[f] ~add_constant:beta () in let bf = Evaluations.mul_c ~evaluations:[b; f_beta] () in let bf_1 = Poly.(Evaluations.interpolation_fft pp.domain_2k bf - constant Scalar.one) in let q, r = Poly.division_xn bf_1 k Scalar.(negate one) in if Poly.is_zero r then q else raise Entry_not_in_table let compute_p (pp : prover_public_parameters) transcript k b0 = Degree_check.prove_multi ~max_commit:(pp.n - 1) ~max_degree:(k - 2) (PC.Public_parameters.get_commit_parameters pp.pc) transcript b0 (* as written p. 13, N × a₀ = ΣA_i for i < N ; since A is sparse, it’s fine *) let compute_a0 n a = Scalar.(List.fold_left (fun acc (_, a) -> acc + a) zero a / of_int n) let compute_cm_a0 pp etas a = (* since cm_a0 is a kzg proof, we can batch every a polynomials into one *) let a_agg = List.fold_left (fun (global_acc, k) a -> ( List.fold_left (fun acc (i, ai) -> IMap.update i (function | None -> Some Scalar.(etas.(k) * ai) | Some a -> Some Scalar.(a + (etas.(k) * ai))) acc) global_acc a, k + 1 )) (IMap.empty, 0) a |> fst |> IMap.to_seq |> List.of_seq in snd @@ compute_and_commit (fun (i, a) -> (a, pp.cms_lagrange_0.(i))) a_agg (* produces a kzg proof for steps 3.5 & 3.6 *) let kzg_prove (pp : prover_public_parameters) transcript n ((cm_f, f_aux), (cm_f_agg, f_agg_aux)) (b0_map, f, f_agg, qb) = let qb_map = SMap.Aggregation.of_list ~n "" qb_name qb in let f_map = SMap.union_disjoint_list [f; f_agg; b0_map; qb_map] in let cm_b0, b0_aux = PC.commit pp.pc b0_map in let cm_qb, qb_aux = PC.commit pp.pc qb_map in (* Does this must be in lexicographic order ? *) let cm_map = PC.Commitment.(recombine [cm_b0; cm_f; cm_f_agg; cm_qb]) in let aux = PC.Commitment.(recombine_prover_aux [b0_aux; f_aux; f_agg_aux; qb_aux]) in (* 3.1 *) let transcript = Transcript.expand PC.Commitment.t cm_map transcript in let gamma, transcript = Fr_generation.random_fr transcript in (* 3.2 *) let b0y = SMap.map (fun p -> Poly.evaluate p gamma) b0_map in let qby = SMap.map (fun p -> Poly.evaluate p gamma) qb_map in let fy = SMap.map (fun p -> Poly.evaluate p gamma) f in let fy_agg = SMap.map (fun p -> Poly.evaluate p gamma) f_agg in let query = get_pc_query gamma in let secret = [f_map] in let cm_aux = [aux] in let answers = [SMap.singleton "x" (SMap.union_disjoint_list [b0y; fy; fy_agg; qby])] in let proof, transcript = PC.prove pp.pc transcript secret cm_aux query answers in (b0y, fy, fy_agg, cm_map, cm_b0, proof, transcript) (* verify the values provided by kzg_prove *) let kzg_verify pp transcript proof k beta = (* 3.1 *) let transcript = Transcript.expand PC.Commitment.t proof.cm_b0_qb_f transcript in let gamma, transcript = Fr_generation.random_fr transcript in (* 3.4 *) let n = List.length proof.a0 in let b0 = List.mapi (fun i a0 -> ( SMap.Aggregation.add_prefix ~n ~i "" b0_name, Scalar.(of_int pp.n * a0 / of_int pp.k) )) proof.a0 in (* 3.5, 3.6.a *) let zhy = Scalar.((gamma ** Z.of_int k) + negate one) in let by = List.map2 (fun b0y (_, b0) -> Scalar.((b0y * gamma) + b0)) (SMap.values proof.b0y) b0 in let qby = let i = ref (-1) in SMap.of_list @@ List.map2 (fun by fy -> i := !i + 1 ; ( SMap.Aggregation.add_prefix ~n ~i:!i "" qb_name, Scalar.(((by * (fy + beta)) + negate one) / zhy) )) by (SMap.values proof.fy_agg) in let cm = [proof.cm_b0_qb_f] in let query = get_pc_query gamma in let answers = [ SMap.singleton "x" (SMap.union_disjoint_list [proof.b0y; proof.fy; proof.fy_agg; qby]); ] in PC.verify pp.pc transcript cm query answers proof.pc (* Checks that f_agg(γ) = f₀(γ) + αf₁(γ) + α²f₂(γ) *) let verify_f_agg alphas proof = let nb_wires = Array.length alphas in (* format proof.fy as [[f₀, f₁, …] ; [f₀, f₁, …] ; …] *) let formatted_fy = let (rev_formatted, last), _ = SMap.fold (fun _ f ((acc_global, acc), count) -> (* if count = nb_wires, it means we went accross every wires for this proof & the current wire is for a new proof *) if count = nb_wires - 1 then ((List.rev acc :: acc_global, [f]), 0) else ((acc_global, f :: acc), count + 1)) proof.fy (([], []), -1) in List.rev (List.rev last :: rev_formatted) in (* Check equality for all proofs *) List.for_all2 (fun fs f_agg -> let sum_fs, _ = List.fold_left (fun (acc, i) fy -> (Scalar.(acc + (fy * alphas.(i))), i + 1)) (Scalar.zero, 0) fs in Scalar.eq sum_fs f_agg) formatted_fy (SMap.values proof.fy_agg) (* each f must be a power of two & of the same size *) let prove pp transcript f_map_list = let k = Array.length (snd @@ SMap.choose (List.hd f_map_list)) in (* n = nb_proofs *) let n = List.length f_map_list in (* The map of all wires polynomials *) let f_map = SMap.union_disjoint_list @@ List.mapi (fun i f_map -> SMap.map (fun f -> Evaluations.( interpolation_fft pp.domain_k (of_array (k - 1, f)))) f_map |> SMap.Aggregation.prefix_map ~n ~i "") f_map_list in let cm_f, f_aux = PC.commit pp.pc f_map in let transcript = Transcript.expand PC.Commitment.t cm_f transcript in (* α will be used to aggregate wires & table’s columns *) let alpha, transcript = Fr_generation.random_fr transcript in let alphas = Fr_generation.powers (SMap.cardinal f_map) alpha in let f_agg_arrays_list = List.map (fun f_map -> Array.init k (fun i -> fst @@ SMap.fold (fun _ f (acc, j) -> (Scalar.(acc + (alphas.(j) * f.(i))), j + 1)) f_map (Scalar.zero, 0))) f_map_list in let f_agg_list = List.map (fun f -> Evaluations.(interpolation_fft pp.domain_k (of_array (k - 1, f)))) f_agg_arrays_list in let f_agg_map = SMap.Aggregation.of_list ~n "" f_agg_name f_agg_list in let cm_f_agg, f_agg_aux = PC.commit pp.pc f_agg_map in (* 1.1, 1.2 *) let m_and_t, cm_m = List.map2 (compute_m_and_t_sparse pp) f_map_list f_agg_arrays_list |> List.split in let cm_m, _ = PC.Commitment.of_list pp.pc ~name:m_name cm_m in (* 2.1 *) let transcript = Transcript.list_expand PC.Commitment.t [cm_f_agg; cm_m] transcript in let beta, transcript = Fr_generation.random_fr transcript in (* 2.2, 2.3 *) let a, cm_a = List.map (compute_a pp beta) m_and_t |> List.split in let cm_a, _ = PC.Commitment.of_list pp.pc ~name:a_name cm_a in (* 2.4 *) let cm_qa, _ = List.map (compute_cm_qa alphas pp) a |> PC.Commitment.of_list pp.pc ~name:qa_name in (* 2.5 *) let b = List.map (compute_b beta k pp.domain_k) f_agg_arrays_list in (* 2.6 *) let b0 = SMap.of_list @@ List.mapi (fun i b -> (SMap.Aggregation.add_prefix ~n ~i "" b0_name, open_at_0 b)) b in (* 2.8, 2.9 *) let qb = List.map2 (compute_qb pp beta k) b (SMap.values f_agg_map) in let transcript = Transcript.list_expand PC.Commitment.t [cm_a; cm_qa] transcript in (* 3.6.b *) let b0y, fy, fy_agg, cm_b0_qb_f, cm_b0, pc, transcript = kzg_prove pp transcript n ((cm_f, f_aux), (cm_f_agg, f_agg_aux)) (b0, f_map, f_agg_map, qb) in (* 2.10 *) let cm_p, transcript = Degree_check.prove_multi ~max_commit:(pp.n - 1) ~max_degree:(k - 2) (PC.Public_parameters.get_commit_parameters pp.pc) transcript cm_b0 b0 in let transcript = Transcript.expand Degree_check.Proof.t cm_p transcript in (* 3.3 *) let a0 = List.map (compute_a0 pp.n) a in (* 3.6.a *) let transcript = Transcript.list_expand Scalar.t a0 transcript in let eta, transcript = Fr_generation.random_fr transcript in (* 3.7.a *) let cm_a0 = compute_cm_a0 pp (Fr_generation.powers n eta) a in ( { cm_f; cm_f_agg; cm_a; cm_a0; cm_b0; cm_qa; cm_m; cm_p; a0; b0y; fy; fy_agg; pc; cm_b0_qb_f; }, transcript ) let verify pp transcript proof = let transcript = Transcript.expand PC.Commitment.t proof.cm_f transcript in (* α will be used to aggregate wires & table’s columns *) let alpha, transcript = Fr_generation.random_fr transcript in let alphas = Fr_generation.powers (List.length pp.cm_table) alpha in (* 2.1 *) let transcript = Transcript.list_expand PC.Commitment.t [proof.cm_f_agg; proof.cm_m] transcript in let beta, transcript = Fr_generation.random_fr transcript in (* 3.1 *) let transcript = Transcript.list_expand PC.Commitment.t [proof.cm_a; proof.cm_qa] transcript in let f_agg_verif = verify_f_agg alphas proof in (* 3.5, 3.6.a *) let kzg_verif, transcript = kzg_verify pp transcript proof pp.k beta in (* 2.12 *) (* At this point, b0 already has been added to the transcript, & it is added again in Degree_check *) let check_b0, transcript = Degree_check.verify_multi pp.srs2_N_1_k_2 transcript proof.cm_b0 proof.cm_p in let transcript = Transcript.expand Degree_check.Proof.t proof.cm_p transcript in (* 3.6.a *) let transcript = Transcript.list_expand Scalar.t proof.a0 transcript in let eta, transcript = Fr_generation.random_fr transcript in let etas = Fr_generation.powers (PC.Commitment.to_map proof.cm_a |> SMap.cardinal) eta in let cm_a = aggregate_cm proof.cm_a etas in let cm_qa = aggregate_cm proof.cm_qa etas in let cm_m = aggregate_cm proof.cm_m etas in let a0 = List.fold_left Scalar.(fun acc a -> (acc * eta) + a) Scalar.zero (List.rev proof.a0) in (* 2.11 *) let check_a = let table, _ = List.fold_left (fun (acc, i) c -> G2.(add acc (mul c alphas.(i)), i + 1)) (G2.zero, 0) pp.cm_table in Pairing.pairing_check G1. [ (negate cm_a, table); (cm_qa, pp.cm_zv); (add cm_m (negate (mul cm_a beta)), pp.srs2_0); ] in (* 3.6.b *) let check_a0 = Pairing.pairing_check G1. [ (add cm_a (negate (mul one a0)), pp.srs2_0); (negate proof.cm_a0, pp.srs2_1); ] in (f_agg_verif && kzg_verif && check_a && check_b0 && check_a0, transcript) end include (Internal : Cq_sig)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>