package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.plompiler/gadget_poseidon.ml.html
Source file gadget_poseidon.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Lang_core open Lang_stdlib module type PARAMETERS = sig val width : int val nb_full_rounds : int val nb_partial_rounds : int val nb_skips : int val mds_matrix : string array array val round_constants : string array val partial_round_idx_to_permute : int end module Make (PP : PARAMETERS) (L : LIB) = struct open PP open L module Poly = Polynomial.MakeUnivariate (S) type poly = Poly.t (* Map between scalar variables and an identifier used as degree in their polynomial representation. Identifiers are guarateed to be unique. *) module Map : sig val init : unit -> unit val degree_of_wire : scalar repr -> int val wire_of_degree : int -> scalar repr end = struct let assoc : ((scalar repr * int) list * int) ref = ref ([], 1) let init () = assoc := ([], 1) let degree_of_wire w = List.find_opt (fun (w', _d) -> eq w w') (fst !assoc) |> function | Some (_, d) -> d | None -> let l, d = !assoc in let l = (w, d) :: l in assoc := (l, d + 1) ; d let wire_of_degree d = List.find_opt (fun (_w, d') -> d = d') (fst !assoc) |> function | Some (w, _) -> w | None -> assert false end type polys = poly array let initial_state = Array.init width (fun _ -> Poly.zero) let print_state state = Array.iter (fun p -> Format.printf "%s\n" (Poly.to_string p)) state ; Format.printf "\n" let mds_matrix = mds_matrix |> Array.map (Array.map S.of_string) let round_constants = round_constants |> Array.map S.of_string (* Linear composition trick: - Core idea: The composition of two linear functions is a linear function. - Application to Poseidon: Partial rounds are linear functions for (width-1) elements of the state. We can compose two or more partial rounds (configured with [nb_skips]) before calculating (creating wires for) the actual value of the elements that are linearly afected. - Execution: We store pending linear computations as polynomials, whose monomials represent the wires that need to be linearly combined. The i-th wire is represented by monomial x^{i+1}. The independent term x^{0} is reserved for the constant ~qc if any. *) (* A polynomial represents a linear combination of wires (and a constant). The i-th wire is associated to monomial x^{i+1} so that wire 0 is not in conflict with the constant (which is stored in the independent term) *) let poly_of_wire w = Poly.of_coefficients [(S.one, Map.degree_of_wire w)] let wire_of_poly p = with_label ~label:"Poseidon.wire_of_poly" @@ let coeffs = Poly.get_list_coefficients p |> List.rev in let qc, ws = match coeffs with (qc, 0) :: l -> (qc, l) | l -> (S.zero, l) in let combined_lists = List.map (fun (q, d) -> (q, Map.wire_of_degree d)) ws in let coeffs, xs = List.split combined_lists in Num.add_list ~qc ~coeffs (to_list xs) let s_box p : poly t = with_label ~label:"Poseidon.s_box" @@ if Poly.is_constant p then ret Poly.(p * p * p * p * p) else let open Num in let* x = wire_of_poly p in let* x5 = pow5 x in ret @@ poly_of_wire x5 let rec repeat : n:int -> ('a -> 'a t) -> 'a -> 'a t = fun ~n f e -> if n <= 0 then ret e else let* x = f e in repeat ~n:(n - 1) f x let state_map : polys -> (poly -> poly t) -> polys t = fun state f -> with_label ~label:"Poseidon.state_map" @@ let rec aux : polys -> int -> polys t = fun state j -> if j = width then ret state else let* p = f state.(j) in state.(j) <- p ; aux state (j + 1) in aux state 0 (* Simplify the state into single-monomial polynomials by evaluating pending the linear combination that they store *) let checkpoint : polys -> polys t = fun state -> with_label ~label:"Poseidon.checkpoint" @@ let f p = if Poly.is_constant p then ret p else let* w = wire_of_poly p in ret @@ poly_of_wire w in state_map state f let apply_matrix state = let x = Array.copy state in for j = 0 to width - 1 do state.(j) <- Poly.zero ; for i = 0 to width - 1 do state.(j) <- Poly.(state.(j) + mult_by_scalar mds_matrix.(j).(i) x.(i)) done done ; state let apply_round_key (state, i_round_key) = for i = 0 to width - 1 do state.(i) <- Poly.add state.(i) (Poly.constants @@ round_constants.(i_round_key + i)) done ; (state, i_round_key + width) let full_round : ?skip_ark:bool -> polys * int -> (polys * int) t = fun ?(skip_ark = false) (state, i_round_key) -> with_label ~label:"Poseidon.full_round" @@ let* state = state_map state s_box in let state = apply_matrix state in if skip_ark then ret (state, i_round_key) else ret @@ apply_round_key (state, i_round_key) let full_round128 : ?skip_ark:bool -> polys * int -> (polys * int) t = fun ?(skip_ark = false) (state, i_round_key) -> assert (width = 3) ; with_label ~label:"Poseidon.full_round128" @@ let* state = checkpoint state in let* x0 = wire_of_poly state.(0) in let* x1 = wire_of_poly state.(1) in let* x2 = wire_of_poly state.(2) in let k = [|S.zero; S.zero; S.zero|] in if not skip_ark then for i = 0 to width - 1 do k.(i) <- round_constants.(i_round_key + i) done ; let* output = Poseidon.poseidon128_full_round ~matrix:mds_matrix ~k (x0, x1, x2) in (match of_list output with | [y0; y1; y2] -> state.(0) <- poly_of_wire y0 ; state.(1) <- poly_of_wire y1 ; state.(2) <- poly_of_wire y2 | _ -> assert false) ; ret @@ (state, i_round_key + width) let partial_round : batch:int -> polys * int -> (polys * int) t = fun ~batch (state, i_round_key) -> with_label ~label:"Poseidon.partial_round" @@ let f (state, i_round_key) = let* p = s_box state.(partial_round_idx_to_permute) in state.(partial_round_idx_to_permute) <- p ; let state = apply_matrix state in ret @@ apply_round_key (state, i_round_key) in let* state, i_round_key = repeat ~n:batch f (state, i_round_key) in let* state = checkpoint state in ret (state, i_round_key) let partial_round128 : batch:int -> polys * int -> (polys * int) t = fun ~batch (state, i_round_key) -> assert (width = 3) ; assert (batch = 4) ; with_label ~label:"Poseidon.partial_round128" @@ let* state = checkpoint state in let* x0 = wire_of_poly state.(0) in let* x1 = wire_of_poly state.(1) in let* x2 = wire_of_poly state.(2) in let ks = Array.make_matrix width batch S.zero in for j = 0 to batch - 1 do for i = 0 to width - 1 do ks.(i).(j) <- round_constants.(i_round_key + (width * j) + i) done done ; let* output = Poseidon.poseidon128_four_partial_rounds ~matrix:mds_matrix ~ks (x0, x1, x2) in (match of_list output with | [y0; y1; y2] -> state.(0) <- poly_of_wire y0 ; state.(1) <- poly_of_wire y1 ; state.(2) <- poly_of_wire y2 | _ -> assert false) ; ret @@ (state, i_round_key + (batch * width)) let apply_permutation (state, _) = with_label ~label:"Poseidon.apply_permutation" @@ let batch = nb_skips + 1 in let full = if width = 3 then full_round128 else full_round in let partial = if width = 3 && batch = 4 then partial_round128 else partial_round in let state, i_round_key = apply_round_key (state, 0) in let* state = repeat ~n:(nb_full_rounds / 2) full (state, i_round_key) in let* state = repeat ~n:(nb_partial_rounds / batch) (partial ~batch) state in let* state = partial_round ~batch:(nb_partial_rounds mod batch) state in let* state = repeat ~n:((nb_full_rounds / 2) - 1) full state in full ~skip_ark:true state let prepare_block with_padding (state, blocks_read) r nb_chunks inputs = let block_size = if blocks_read < nb_chunks - 1 then width - 1 else if with_padding then r else Array.length inputs - (blocks_read * (width - 1)) in let offset = blocks_read * (width - 1) in for j = 0 to block_size - 1 do let p = Poly.add state.(j + 1) @@ poly_of_wire inputs.(offset + j) in state.(j + 1) <- p done ; if blocks_read = nb_chunks - 1 && with_padding then state.(r + 1) <- Poly.add state.(r + 1) Poly.one ; (state, blocks_read + 1) let digest : ?input_length:int -> scalar list repr -> scalar repr t = fun ?input_length inputs -> Map.init () ; let inputs = Array.of_list @@ of_list inputs in let l = Array.length inputs in let assert_length expected = let error_msg = Format.sprintf "digest expects data of length %d, %d given" expected l in if l <> expected then raise @@ Invalid_argument error_msg in Option.iter assert_length input_length ; let with_padding = Option.is_none input_length in let polys = Array.init width (fun _ -> Poly.zero) in let nb_blocks = ((l - if with_padding then 0 else 1) / (width - 1)) + 1 in let r = l mod (width - 1) in with_label ~label:"Poseidon.digest" @@ let block_iteration (state, blocks_read, i_round_key) = let state, blocks_read = prepare_block with_padding (state, blocks_read) r nb_blocks inputs in let* state, i_round_key = apply_permutation (state, i_round_key) in ret (state, blocks_read, i_round_key) in let* state, _, _ = repeat ~n:nb_blocks block_iteration (polys, 0, 0) in wire_of_poly state.(1) end module Poseidon128 = struct module P : Hash_sig.P_HASH = struct module H = Mec.Hash.Poseidon128.Make (S) include H.Hash let direct ?input_length inputs = let ctx = init ?input_length () in let ctx = digest ctx inputs in get ctx end module V : Hash_sig.HASH = Make (struct let width = 3 let nb_full_rounds = 8 let nb_partial_rounds = 56 let nb_skips = 3 let mds_matrix = Mds_128.v let round_constants = Ark_128.v let partial_round_idx_to_permute = 2 end) end module Poseidon252 = struct module P : Hash_sig.P_HASH = struct module H = Mec.Hash.Poseidon252.Make (S) include H.Hash let direct ?input_length inputs = let ctx = init ?input_length () in let ctx = digest ctx inputs in get ctx end module V : Hash_sig.HASH = Make (struct let width = 5 let nb_full_rounds = 8 let nb_partial_rounds = 59 let nb_skips = 4 let mds_matrix = Mds_252.v let round_constants = Ark_252.v let partial_round_idx_to_permute = 4 end) end module PoseidonFull = struct module P : Hash_sig.P_HASH = struct module H = Mec.Hash.Neptunus.Make (S) include H.Hash let direct ?input_length inputs = let ctx = init ?input_length () in let ctx = digest ctx inputs in get ctx end module V : Hash_sig.HASH = Make (struct let width = 3 let nb_full_rounds = 60 let nb_partial_rounds = 0 let nb_skips = 0 let mds_matrix = Mds_full.v let round_constants = Ark_full.v let partial_round_idx_to_permute = 0 end) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>