package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.bls12-381-polynomial/polynomial.ml.html
Source file polynomial.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module Fr = Bls12_381.Fr module Stubs = struct type fr = Fr.t type fr_array = Fr_carray.t (** [of_sparse res p n] converts the sparse representation of a polynomial [p] to the dense representation, from an OCaml array [p] of size [n] to a C array [res] of size [degree p + 1] requires: - degree of each coeff [d_i >= 0] and [d_i] are unique - the result must be initialized with zero (as done by {!Fr_carray.allocate}) - [size res = degree p + 1] - [size p = n] *) external of_sparse : fr_array -> (fr * int) array -> int -> unit = "caml_bls12_381_polynomial_polynomial_of_sparse_stubs" [@@noalloc] (** [add res a b size_a size_b] writes the result of polynomial addition of [a] and [b] in [res] requires: - [size a = size_a] - [size b = size_b] - [size res = max (size_a, size_b)] - [res], [a] and [b] are either pairwise disjoint or equal *) external add : fr_array -> fr_array -> fr_array -> int -> int -> unit = "caml_bls12_381_polynomial_polynomial_add_stubs" [@@noalloc] (** [sub res a b size_a size_b] writes the result of polynomial subtraction of [b] from [a] in [res] requires: - [size a = size_a] - [size b = size_b] - [size res = max (size_a, size_b)] - [res], [a] and [b] are either pairwise disjoint or equal *) external sub : fr_array -> fr_array -> fr_array -> int -> int -> unit = "caml_bls12_381_polynomial_polynomial_sub_stubs" [@@noalloc] (** [mul res a b size_a size_b] writes the result of polynomial multiplication of [a] by [b] in [res] requires: - the result must be initialized with zero (as done by {!Fr_carray.allocate}) - [size a = size_a] - [size b = size_b] - [size res = size_a + size_b - 1] *) external mul : fr_array -> fr_array -> fr_array -> int -> int -> unit = "caml_bls12_381_polynomial_polynomial_mul_stubs" [@@noalloc] (** [mul_by_scalar res b a size_a] writes the result of multiplying a polynomial [a] by a blst_fr element [b] in [res] requires: - [size a = size_a] - [size res = size_a] - [res] and [a] either disjoint or equal *) external mul_by_scalar : fr_array -> fr -> fr_array -> int -> unit = "caml_bls12_381_polynomial_polynomial_mul_by_scalar_stubs" [@@noalloc] (** [linear res poly_polylen_coeff nb_polys] writes the result of computing [λ₁·p₁(x) + λ₂·p₂(x) + … + λₖ·pₖ(x)] in [res], where - [poly_polylen_coeff.[i] = (pᵢ, size_p_i, λᵢ)] - [nb_polys] is a number of polynomials, i.e., [i = 1..nb_polys] requires: - the result must be initialized with zero (as done by {!Fr_carray.allocate}) - [size res = max (size_p_i)] - [size poly_polylen_coeff = nb_polys] - [size p_i = size_p_i] *) external linear : fr_array -> (fr_array * int * fr) array -> int -> unit = "caml_bls12_381_polynomial_polynomial_linear_stubs" [@@noalloc] (** [linear_with_powers res c poly_polylen nb_polys] writes the result of computing [c⁰·p₀(x) + c¹·p₁(x) + … + cᵏ·pₖ(x)] in [res], where - [poly_polylen.[i] = (pᵢ, size_p_i)] - [nb_polys] is a number of polynomials requires: - the result must be initialized with zero (as done by {!Fr_carray.allocate}) - [size res = max (size_p_i)] - [size poly_polylen = nb_polys] - [size p_i = size_p_i] *) external linear_with_powers : fr_array -> fr -> (fr_array * int) array -> int -> unit = "caml_bls12_381_polynomial_polynomial_linear_with_powers_stubs" [@@noalloc] (** [negate res p n] writes the result of negating a polynomial [p] in [res] requires: - [size p = n] - [size res = n] - [res] and [p] either disjoint or equal *) external negate : fr_array -> fr_array -> int -> unit = "caml_bls12_381_polynomial_polynomial_negate_stubs" [@@noalloc] (** [evaluate res p n x] writes the result of evaluating a polynomial [p] at [x] in [res] - requires: [size p = n] and [n > 0] *) external evaluate : fr -> fr_array -> int -> fr -> unit = "caml_bls12_381_polynomial_polynomial_evaluate_stubs" [@@noalloc] (** [division_xn res_q res_r p size_p (n, c)] writes the quotient and remainder of the division of a polynomial [p] by [(X^n + c)] in [res] requires: - [size p = size_p] and [size_p > n] - [size res_q = size_p - n] - [size res_r = n] *) external division_xn : fr_array -> fr_array -> fr_array -> int -> int * fr -> unit = "caml_bls12_381_polynomial_polynomial_division_xn_stubs" [@@noalloc] (** [mul_xn res p size_p n c] writes the result of multiplying a polynomial [p] by [(X^n + c)] in [res] requires: - [res] is initialized with bls-fr zeros - [size p = size_p] - [size res = size_p + n] *) external mul_xn : fr_array -> fr_array -> int -> int -> fr -> unit = "caml_bls12_381_polynomial_polynomial_mul_xn_stubs" [@@noalloc] external derivative : fr_array -> fr_array -> int -> unit = "caml_bls12_381_polynomial_polynomial_derivative_stubs" [@@noalloc] end module Polynomial_impl = struct type scalar = Fr.t type t = Fr_carray.t [@@deriving repr] let of_carray p = p let to_carray p = p let length = Fr_carray.length let erase p = Fr_carray.erase p (length p) let allocate = Fr_carray.allocate let copy p = Fr_carray.copy ~offset:0 ~len:(length p) p let copy_carray = Fr_carray.copy let get = Fr_carray.get let degree = Fr_carray.degree let init = Fr_carray.init let equal p1 p2 = let n1 = length p1 in let n2 = length p2 in let short_n, long_p, long_n = if n1 <= n2 then (n1, p2, n2) else (n2, p1, n1) in if Fr_carray.equal p1 ~offset1:0 p2 ~offset2:0 ~len:short_n then let rec stop_at_first_non_zero i = if i = long_n then true else if Fr.eq (get long_p i) Fr.zero then stop_at_first_non_zero (i + 1) else false in stop_at_first_non_zero short_n else false let to_string p = String.concat " ; " (List.map Fr.to_string (Array.to_list @@ Fr_carray.to_array p)) (* ?of_sparse_coefficients *) let of_coefficients coefficients = let coefficients = Array.of_list coefficients in let degree = Array.fold_left (fun max_degree (_coeff, d) -> assert (d >= 0) ; max d max_degree) 0 coefficients in let polynomial = allocate (degree + 1) in Stubs.of_sparse polynomial coefficients (Array.length coefficients) ; polynomial let of_dense = Fr_carray.of_array let zero = of_coefficients [] let one = of_coefficients [(Fr.one, 0)] let generate_biased_random_polynomial n = assert (n >= 0) ; if Random.int 10 = 0 || n = 0 then zero else let poly = Array.init n (fun _ -> if Random.bool () then Fr.random () else Fr.copy Fr.zero) in Array.set poly (n - 1) Fr.one ; Fr_carray.of_array poly let random n = List.init n (fun i -> (Fr.random (), i)) |> of_coefficients let to_dense_coefficients p = (* the polynomial could be padded with zero, so we instead of using [n] and wasting some space we recompute the size of the minimal representation *) let len = 1 + max 0 (degree p) in Fr_carray.to_array ~len p (* ensures: no coefficient in the result is zero *) let to_sparse_coefficients poly = let poly = to_dense_coefficients poly in let res = ref [] in for deg = Array.length poly - 1 downto 0 do let coef = poly.(deg) in if not (Fr.is_zero coef) then res := (Fr.copy coef, deg) :: !res done ; !res let add p1 p2 = let n1 = length p1 in let n2 = length p2 in let res_size = max n1 n2 in let res = allocate res_size in Stubs.add res p1 p2 n1 n2 ; res let add_inplace res p1 p2 = let n1 = length p1 in let n2 = length p2 in let n_res = length res in assert (n_res = max n1 n2) ; Stubs.add res p1 p2 n1 n2 let sub p1 p2 = let n1 = length p1 in let n2 = length p2 in let max_size = max n1 n2 in let res = allocate max_size in Stubs.sub res p1 p2 n1 n2 ; res let sub_inplace res p1 p2 = let n1 = length p1 in let n2 = length p2 in let n_res = length res in assert (n_res >= max n1 n2) ; Stubs.sub res p1 p2 n1 n2 let mul p1 p2 = let n1 = length p1 in let n2 = length p2 in let res_size = n1 + n2 - 1 in let res = allocate res_size in Stubs.mul res p1 p2 n1 n2 ; res let mul_by_scalar scalar p = let n = length p in let res = allocate n in Stubs.mul_by_scalar res scalar p n ; res let mul_by_scalar_inplace res scalar p = let n = length p in let n_res = length res in assert (n_res >= n) ; Stubs.mul_by_scalar res scalar p n let linear polys coeffs = let nb_polys = List.length polys in assert (List.compare_length_with coeffs nb_polys = 0) ; let res_size = List.fold_left (fun res_size p -> max (length p) res_size) 0 polys in if res_size = 0 then zero else let res = allocate res_size in let poly_polylen_coeff = List.map2 (fun p coeff -> (p, length p, coeff)) polys coeffs in Stubs.linear res (Array.of_list poly_polylen_coeff) nb_polys ; res let linear_with_powers polys coeff = let nb_polys = List.length polys in let polys = List.map (fun p -> (p, length p)) polys in let res_size = List.fold_left (fun res_size (_p, size) -> max size res_size) 0 polys in let res = allocate res_size in Stubs.linear_with_powers res coeff (Array.of_list polys) nb_polys ; res let opposite p = let n = length p in let res = allocate n in Stubs.negate res p n ; res let opposite_inplace p = let n = length p in Stubs.negate p p n let is_zero p = if degree p = -1 then true else false let truncate ~len p = if len < 0 then raise (Invalid_argument "truncate: expected positive length.") else (* [min_len_capacity p] returns the minimum of [len] and [degree p + 1]. Here, [degree p + 1] is the minimal length of the {!type:Carray.t} representing the polynomial [p]. When [p] is the zero polynomial its degree is -1, so we return 1 for one coefficient holding the value. *) let min_len_capacity p = if is_zero p then 1 else min len (degree p + 1) in Fr_carray.copy ~len:(min_len_capacity p) p let evaluate p scalar = let n = length p in let res = Fr.copy scalar in Stubs.evaluate res p n scalar ; res exception Rest_not_null of string let division_xn p n c = assert (n > 0) ; let poly_degree = degree p in let poly_size = poly_degree + 1 in if poly_degree = -1 || poly_degree < n then (zero, p) else let res_q = allocate (poly_size - n) in let res_r = allocate n in Stubs.division_xn res_q res_r p poly_size (n, c) ; let poly_q = res_q in let poly_r = res_r in (poly_q, poly_r) let mul_xn p n c = let l = length p in let res = allocate (l + n) in Stubs.mul_xn res p l n c ; res let derivative p = let n = length p in if is_zero p || n = 1 then zero else let res = allocate (n - 1) in Stubs.derivative res p n ; res (* for p polynomial, returns p splitted in nb_chunks parts of degree size_chunks ; the nb_chunks - 1 first parts have degree size_chunks or less (if it’s less the next parts are 0) ; the last part’s degree will contain the rest of p coefficients without any degree bound *) let split ~nb_chunks size_chunks p = let poly_degree = degree p in let nb_coeff_P = 1 + poly_degree in if poly_degree = -1 then List.init nb_chunks (fun _ -> zero) else List.init nb_chunks (fun i -> if (i + 1) * size_chunks <= nb_coeff_P then if i = nb_chunks - 1 then Fr_carray.copy ~offset:(i * size_chunks) p else Fr_carray.copy ~offset:(i * size_chunks) ~len:size_chunks p else if i * size_chunks < nb_coeff_P then Fr_carray.copy ~offset:(i * size_chunks) ~len:(nb_coeff_P - (i * size_chunks)) p else zero) let blind ~nb_blinds n p = let blinding_factor = random nb_blinds in (add p (mul_xn blinding_factor n Fr.(negate one)), blinding_factor) let ( = ) = equal let ( + ) = add let ( - ) = sub let ( * ) = mul let constant c = of_coefficients [(c, 0)] let fold_left_map = Fr_carray.fold_left_map end module type Polynomial_sig = sig (** This library implements polynomials of Bls12_381.Fr as arrays of contiguous memory in C, allowing much better performances for algorithms that scan the polynomials. An array [a] of size [n] represents the polynomial $\sum_i^(n-1) a[i] X^i$ The length of [a] is always greater or equal than the degree+1 of its corresponding polynomial, if greater it padded with zeros. As a consequence a polynomial has many representations, namely all arrays with trailing zeros. *) type scalar type t [@@deriving repr] (** [init n f] returns a fresh polynomial of length [n], with element number [i] initialized to the result of [f i]. *) val init : int -> (int -> scalar) -> t (** [allocate len] creates a zero polynomial of size [len] *) val allocate : int -> t (** [erase p] overwrites a polynomial [p] with a zero polynomial of the same size as the polynomial [p] *) val erase : t -> unit (** [generate_biased_random_polynomial n] generates a random polynomial of degree strictly lower than [n], the distribution is NOT uniform, it is biased towards sparse polynomials and particularly towards the zero polynomial *) val generate_biased_random_polynomial : int -> t (** [random n] generates a uniformly sampled polynomial among the set of all polynomials of degree strictly lower than [n] *) val random : int -> t (** [degree p] returns the degree of a polynomial [p]. Returns [-1] for the zero polynomial *) val degree : t -> int (** [get p i] returns the [i]-th element of a given array [p], a coefficient of [X^i] in [p] *) val get : t -> int -> scalar (** [to_string p] returns the string representation of a polynomial [p] *) val to_string : t -> string (** [copy p] returns a copy of a polynomial [p] *) val copy : t -> t (** [truncate ~len p] returns a new polynomial made of the first [len] coefficients of [p]. If [degree p + 1] is less than [len] then [copy p] is returned. @raise [Invalid_argument] if [len] is negative. *) val truncate : len:int -> t -> t (** [to_dense_coefficients p] returns the dense representation of a polynomial [p], i.e., it converts a C array to an OCaml array *) val to_dense_coefficients : t -> scalar array (** [of_dense p] creates a value of type [t] from the dense representation of a polynomial [p], i.e., it converts an OCaml array to a C array *) val of_dense : scalar array -> t (** [of_coefficients p] creates a value of type [t] from the sparse representation of a polynomial [p], i.e., it converts an OCaml array to a C array *) val of_coefficients : (scalar * int) list -> t (** [equal a b] checks whether a polynomial [a] is equal to a polynomial [b] *) val equal : t -> t -> bool (** [is_zero p] checks whether a polynomial [p] is the zero polynomial *) val is_zero : t -> bool (** [zero] is the zero polynomial, the neutral element for polynomial addition *) val zero : t (** [one] is the constant polynomial one, the neutral element for polynomial multiplication *) val one : t (** [add] computes polynomial addition *) val add : t -> t -> t (** [add_inplace res a b] computes polynomial addition of [a] and [b] and writes the result in [res] Note: [res] can be equal to either [a] or [b] *) val add_inplace : t -> t -> t -> unit (** [sub] computes polynomial subtraction *) val sub : t -> t -> t (** [sub_inplace res a b] computes polynomial subtraction of [a] and [b] and writes the result in [res] Note: [res] can be equal to either [a] or [b] *) val sub_inplace : t -> t -> t -> unit (** [mul] computes polynomial multiplication Note: naive quadratic algorithm, result's size is the sum of arguments' size *) val mul : t -> t -> t (** [mul_by_scalar] computes multiplication of a polynomial by a blst_fr element *) val mul_by_scalar : scalar -> t -> t (** [mul_by_scalar_inplace res s p] computes multiplication of a polynomial [p] by a blst_fr element [s] and stores it in [res] *) val mul_by_scalar_inplace : t -> scalar -> t -> unit (** [linear p s] computes [∑ᵢ s.(i)·p.(i)] *) val linear : t list -> scalar list -> t (** [linear_with_powers p s] computes [∑ᵢ sⁱ·p.(i)]. This function is more efficient than [linear] + [powers] *) val linear_with_powers : t list -> scalar -> t (** [opposite] computes polynomial negation *) val opposite : t -> t (** [opposite_inplace p] computes polynomial negation Note: The argument [p] is overwritten *) val opposite_inplace : t -> unit (** [evaluate p x] evaluates a polynomial [p] at [x] *) val evaluate : t -> scalar -> scalar exception Rest_not_null of string (** [division_xn p n c] returns the quotient and remainder of the division of [p] by [(X^n + c)] *) val division_xn : t -> int -> scalar -> t * t (** [mul_xn p n c] returns the product of [p] and [(X^n + c)] *) val mul_xn : t -> int -> scalar -> t (** [derivative p] returns the formal derivative of [p] *) val derivative : t -> t val split : nb_chunks:int -> int -> t -> t list (** [blind ~nb_blinds n p] adds to polynomial [p] a random multiple of polynomial [(X^n - 1)], chosen by uniformly sampling a polynomial [b] of degree strictly lower than [nb_blinds] and multiplying it by [(X^n - 1)], [b] is returned as the second argument *) val blind : nb_blinds:int -> int -> t -> t * t (** Infix operator for {!equal} *) val ( = ) : t -> t -> bool (** Infix operator for {!add} *) val ( + ) : t -> t -> t (** Infix operator for {!sub} *) val ( - ) : t -> t -> t (** Infix operator for {!mul} *) val ( * ) : t -> t -> t (** [constant s] creates a value of type [t] from a blst_fr element [s] *) val constant : scalar -> t (** [fold_left_map] is a combination of fold_left and map that threads an accumulator through calls to [f]. *) val fold_left_map : ('acc -> scalar -> 'acc * scalar) -> 'acc -> t -> 'acc * t end module type Polynomial_unsafe_sig = sig include Polynomial_sig with type t = Fr_carray.t (** [to_carray p] converts [p] from type {!type:t} to type {!type:Fr_carray.t} Note: [to_carray p] doesn't create a copy of [p] *) val to_carray : t -> Fr_carray.t (** [of_carray p] converts [p] from type {!type:Fr_carray.t} to type {!type:t} Note: [of_carray p] doesn't create a copy of [p] *) val of_carray : Fr_carray.t -> t (** [copy_carray ?offset ?len p] returns a polynomial made of [len] contiguous coefficients starting from the coefficient of index [offset]. By default, [offset = 0] and [len = length p - offset]. @raise [Invalid_argument] if [offset] is not in the range 0 to [(length p - 1)], or if [len] is not positive, or if [offset + length] is not in the range 0 to [(length p - 1)]. *) val copy_carray : ?offset:int -> ?len:int -> t -> t (** [length p] returns the length of the underlying {!type:Fr_carray.t}. *) val length : t -> int val to_sparse_coefficients : t -> (scalar * int) list end module Polynomial_unsafe : Polynomial_unsafe_sig with type scalar = Bls12_381.Fr.t = Polynomial_impl include ( Polynomial_unsafe : Polynomial_sig with type scalar = Polynomial_unsafe.scalar and type t = Polynomial_unsafe.t)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>