package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.kzg/kate_amortized.ml.html
Source file kate_amortized.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
open Bls module FFT = Utils.FFT exception Srs_too_short = Commitment.SRS_too_short module Commitment = Commitment.Single_G1 type public_parameters = { max_polynomial_length : int; shard_length : int; srs_g1 : Srs_g1.t; number_of_shards : int; } type preprocess = Domain.t * G1_carray.t array let preprocess_encoding : preprocess t = let open Data_encoding in tup2 Domain.encoding (array G1_carray.encoding) (*Adding repr to inlcude the proof in the transcript*) type shard_proof = Commitment.t [@@deriving repr] type commitment = Commitment.t (*Adding repr to include evaluations_list in the transcript*) type eval_list = Scalar.t array list [@@deriving repr] let commit t = Commitment.commit t.srs_g1 let preprocess_equal (d1, a1) (d2, a2) = Domain.equal d1 d2 && Array.for_all2 G1_carray.eq a1 a2 (* Notations ========= [x]_1 (resp. [x]_2) is a shorthand for x.g where - [x] is a scalar element of type [Scalar.t] - [g] is a generator of the subgroup [Bls12_381.G1] (resp. [Bls12_381.G2]) - ( . ) is the elliptic curve scalar multiplication in the subgroup [Bls12_381.G1] (resp. [Bls12_381.G2]) The SRS (Structure Reference String) is defined as: ([1]_1, [τ]_1, [τ^2]_1, [τ^3]_1, ..., [τ^{Srs_g1.length t.srs.raw.srs_g1 - 1}]_1) where τ is secret. e : [Bls12_381.G1] * [Bls12_381.G2] → [Bls12_381.GT] is a pairing (bilinear, non-degenerate map such that e(g1, g2) = gT where G1=<g1>, G2=<g2>, GT=<gT>). Multi-reveals ============= This feature is described in the KZG extended paper under section 3.4 as batch opening https://link.springer.com/chapter/10.1007/978-3-642-17373-8_11 on arbitrary points. The paper https://eprint.iacr.org/2023/033 shows how to commit and verify quickly when the points form cosets of a group of roots of unity. For n dividing [Scalar.order - 1], let w be a primitive n-th root of unity. For l dividing n, let z=w^{n/l} be a primitive l-th root of unity and Z=<z>. For i=0, ..., n/l - 1, the proof of the evaluations of P(x) at the l points w^i Z is the KZG commitment to the quotient of the euclidean division of P(x) by the polynomial x^l - w^{i*l} whose only roots are w^i Z. In other words, given the euclidean division P(x)=(x^l-w^{i*l}) * q_i(x) + r_{i}(x), deg r(x) < l, the proof is π_i = [q_i(τ)]_1. Opening at one point corresponds to the case l=1 where r_{i}(x)=P(w^i). To verify the proof, we gather the alleged evaluations of P(x) at the points w^i Z. From these possibly correct evaluations, we can construct an alleged remainder r_{i}(x) by computing the inverse DFT on the domain w^i Z, as r_{i}(x)=P(x) on this domain, and as r_{i}(x) is determined by its evaluations at l distinct points. We then check e(c-[r_i(τ)]_1, g_2) ?= e(π, [τ^l]_2 - [w^{i*l}]_2). Multiple multi-reveals ====================== We now wish to reveal not on the domain W=<w>, but on several subdomains: the n/l>1 cosets w^i W_0 of l elements each. The committed polynomial P(x) has degree k-1 where k corresponds to the dimension of the Reed-Solomon code (as a vector subspace of dimension k of F^n). We present the result from https://eprint.iacr.org/2023/033, which assumes the size of the domains n and of their cosets l to be powers of two for correct FFT sizes. Computing the proofs for all such cosets would cost n/l euclidean divisions and multi-exponentiations. Even though the euclidean division by x^l-w^{i*l} is linear in the degree of the committed polynomial, as well as the multi-exponentiation thanks to the Pippenger algorithm (See https://cr.yp.to/papers/pippenger.pdf), computing all proofs leads to a complexity O(n/l * k). It turns out the proofs for the cosets are related, so all proofs can be computed in time O(n/l log (n/l)). Again, for i=0, ..., n/l-1, given the euclidean division P(x)=(x^l-w^{i*l}) q_i(x) + r_i(x), deg r_i(x) < l, the proofs to be computed are π_i ≔ [q_i(τ)]_1. We denote d=deg P, m the next power of 2 of (d + 1), and set P_m, P_{m-1}, ..., P_{d+1}=0. For our purposes we further assume l | m, l < m so that z ≔ w^l a primitive n/l-th root of unity. The floor designates here the truncated division, where terms x^i for i<0 are dropped: q_i(x) = (P(x) - r_i(x)) / (x^l-w^{i*l}) = floor((P(x)-r_i(x)) / (x^l-w^{i*l})) = floor(P(x)/(x^l-w^{i*l})) since deg r_i < l = floor(sum_{k=0}^infty P(x)/(x^{(k+1)*l}) w^{k*i*l} (formal power series of 1/(x^l+c)) = sum_{k=0}^{m/l-1} floor(P(x)/(x^{(k+1)*l})) z^{i*k}. So: q_i(x) = sum_{k=0}^{m/l-1} (P_m x^{m-(k+1)*l} + P_{m-1}x^{m-(k+1)*l-1} + ... + P_{(k+1)*l+1}x + P_{(k+1)*l}) z^{ik}. If l <= d < 2l, then the powers of z are absent of the quotient: q_i(x) = P_l + P_{l+1} x + ... + P_d x^{d-l}. In this case, all proofs are equal since their value doesn't depend on [i]. Thus, π_i = [q_i(x)]_1 = sum_{k=0}^{m/l-1} (P_m[τ^{m-(k+1)*l}] + P_{m-1}[τ^{m-(k+1)*l-1}] + ... + P_{(k+1)*l+1}[τ] + P_{(k+1)*l}) z^{i*k}. Letting - for 0 <= k <= m/l, h_{k} ≔ sum_{j=k*l}^{m} f_j[τ^{j-k*l}] - for m/l < k <= n/l, h_k ≔ 0, we obtain π_i = sum_{k=0}^{n/l-1} h_{k+1} z^{i*k}. So by definition π=(π_0, ..., π_{n/l-1}) is the EC-DFT_z of the vector (h_1, ..., h_{n/l}) in F^{n/l} ( * ). Now, let's address the computation of the coefficients of interest h_k for k=1, ..., n/l. To this end, the authors of https://eprint.iacr.org/2023/033 observe that the computation of the h_k's can be decomposed into the computation of the l "offset" sums: forall j=0, ...,l-1, h_{k,j} = P_{m-j}[τ^{m-k*l-j}] + P_{m-l-j}[τ^{m-(k+1)*l-j}] + ... + P_{(m-j) % l + kl}[τ^{(m-j) % l}]. So the desired coefficients can then be obtained with h_k=sum_{j=0}^{l-1} h_{k,j}. This decomposition of the calculation allows the l vectors (h_{1,j}, ..., h_{floor((m-j)/l), j}) for j=0, ..., l-1 to be computed with l Toeplitz matrix-vector multiplications: (h_{1,j} h_{2,j} ... h_{floor((m-j)/l) - 1, j} h_{floor((m-j)/l), j})^T = |P_{m-j} P_{m-l-j} P_{m-2*l-j} ... P_{(m-j)%l+2*l} P_{(m-j)%l+l} | |0 P_{m-j} P_{m-l-j} ... P_{(m-j)%l+3*l} P_{(m-j)%l+2*l} | |0 0 P_{m-j} ... P_{(m-j)%l+4*l} P_{(m-j)%l+3*l} | |. . . . . . | |. . . . . . | |. . . . . . | |......................................................................| |0 0 0 ... P_{m-j} P_{m-l-j} | |0 0 0 ... 0 P_{m-j} | * (τ^{m-l-j} τ^{m-2*l-j} ... τ^{(m-j)%l+l} τ^{(m-j)%l})^T a || b is the concatenation of a and b. We can extend this Toeplitz matrix to form a circulant matrix whose columns are shifted versions of the vector c=P_{m-j} || 0^{floor((m-j)/l)-1} || P_{(m-j)%l+l} ... P_{m-j-l}. We can then compute circulant matrix-vector multiplication with the FFT. See this presentation from Kyle Kloster, student at Purdue University: https://www.youtube.com/watch?v=w0peHpfFVpc. Given the euclidean divisions m-j = q*l+r, 0 <= r < l for j=0, ...,l-1: 1. Compute l EC-FFTs over G_1: forall j=0, ...,l-1, s_j=EC-FFT_{2m/l}(srs_{m-j-l} srs_{m-j-2*l} srs_{m-j-3*l} ... srs_{m-j-q*l=r} || 0^{2m/l - floor((m-j)/l)}). The above calculation can be done once per trusted setup and can thus be cached. 2. Compute l FFTs over the [Scalar] field: forall j=0, ..., l-1: P'_j = FFT_{2m/l}(P_{m-j} || 0^{q+2*padding+1} || P_{r+l} P_{r+2l} ... P_{r+(q-1)l=m-j-l} || 0^{2m/l- (2*q+2*padding+1)}) where [q = floor ((m-j)/l) = quotient] and [padding] is the difference between [quotient] and the next power of two of [quotient]. 3. Then compute {h}=(h_k)_{k in ⟦1, n/l⟧} with circulant matrix-vector multiplication via FFT: h = sum_{j=0}^{l-1} (h_{1,j} ... h_{floor((m-j)/l), j} || 0^{2m/l- floor((m-j)/l)}) = sum_{j=0}^{l-1}EC-IFFT_{2m/l}(P'_j o_{G_1} s_j) = EC-IFFT_{2m/l} (sum_{j=0}^{l-1} (P_j o_{G_1} s_j)) where o_{G_1} is the pairwise product for vectors with components in G_1. 4. The first n/l coefficients is the result of the multiplication by the Toeplitz vector (with a bit of zero padding starting from the m/l-th coefficient): let's call this vector h'. The n/l KZG proofs are given by π=EC-FFT_{n/l}(h') following the observation ( * ). Complexity of multiple multi-reveals ==================================== For the preprocessing part (step 1), we count l EC-FFTs on G_1, so the asymptotic complexity of the step is O(l * (m/l) log (m/l))=O(m log(m/l)). For the KZG proofs generation part (steps 2 to 4), we count l FFTs on the scalar field F, two EC-FFTs on G_1, and l * 2m/l elliptic curve scalar multiplications in G_1: the runtime complexity is O(l * T_{F}(m/l) + T_{G_1}(n/l) + m), where T_{F} and T_{G_1} represent the runtime cost of the FFT and EC-FFT. Both have the same complexity, even though the latter hides a bigger constant (log of scalar size in bits, here log 256) due to the elliptic curve scalar multiplication. Let's recall that l is in our application the length of a shard, n is the length of the erasure code, α its redundancy factor and m ≈ k is the dimension of the erasure code. Calling s the number of shards, we obtain l = n/s = α*k/s. The runtime of the precomputation part can be rewritten as O(k * log (s/α)). And the computation of the n/l KZG proofs becomes O(k * log (s/α) + s * log s). This explains why the algorithm is more efficient with bigger erasure code redundancies α, especially the precomputation part as it performs EC-FFTs. For our purposes the length of a shard s << k, so the bottleneck is the pointwise scalar multiplication in G_1. *) (* Step 1, returns the pair made of the vectors s_j and the [domain] of length [2 * m / l = 2 * t.max_polynomial_length / t.shard_size] used for the computation of the s_j. *) let preprocess_multiple_multi_reveals t = (* The length of a coset [t.shard_length] divides the domain length [t.max_polynomial_length]. This is because [t.shard_length] divides [t.erasure_encoded_polynomial_length], [t.max_polynomial_length] divides [t.erasure_encoded_polynomial_length] and [t.max_polynomial_length > t.shard_length] (see why [m > 2l] above, where [m = t.max_polynomial_length] and [l = t.shard_length] here). *) assert (t.max_polynomial_length mod t.shard_length = 0) ; let domain_length = 2 * t.max_polynomial_length / t.shard_length in (* TODO https://gitlab.com/tezos/tezos/-/issues/6585 The length of the discrete Fourier transforms is a power of two, though we could relax the constraints to a product of primes dividing the order of the group G1 thanks to the Prime Factorization Algorithm as we currently do with the FFTs on scalar elements. *) assert (domain_length <> 0 && domain_length land (domain_length - 1) = 0) ; let domain = Domain.build domain_length in (* Computes points = srs_{m-j-l} srs_{m-j-2l} srs_{m-j-3l} ... srs_{m-j-ql=r} || 0^{2m/l - floor((m-j)/l)}, s_j = EC-FFT_{2m/l}(points). *) let s_j j = (* According to the documentation of [( / )], "x / y is the greatest integer less than or equal to the real quotient of x by y". Thus it equals [floor (x /. y)]. *) let quotient = (t.max_polynomial_length - j) / t.shard_length in if Srs_g1.size t.srs_g1 < t.max_polynomial_length then raise @@ Srs_too_short (Printf.sprintf "Kate_amortized.preprocess: SRS size (= %d) smaller than \ expected (= %d)" (Srs_g1.size t.srs_g1) t.max_polynomial_length) ; let points = G1_carray.init domain_length (fun i -> if i < quotient then Srs_g1.get t.srs_g1 (t.max_polynomial_length - j - ((i + 1) * t.shard_length)) else G1.(zero)) in G1_carray.evaluation_ecfft ~domain ~points in (domain, Array.init t.shard_length s_j) (* [multiple_multi_reveals t preprocess coefficients] returns the proofs for each of the [t.number_of_shards] shards. Implements the "Multiple multi-reveals" section above. *) let multiple_multi_reveals t ~preprocess:(domain, sj) ~coefficients : shard_proof array = (* [t.max_polynomial_length > l] where [l = t.shard_length]. *) assert (t.shard_length < t.max_polynomial_length) ; (* Step 2. *) let domain_length = Domain.length domain in let h_j j = let remainder = (t.max_polynomial_length - j) mod t.shard_length in let quotient = (t.max_polynomial_length - j) / t.shard_length in let padding = Utils.diff_next_power_of_two quotient in (* points = P_{m-j} || 0^{q+2*padding+1} || P_{r+l} P_{r+2l} ... P_{r+(q-1)l=m-j-l} || 0^{2m/l- (2*q+2*padding+1)} where [q = floor ((m-j)/l) = quotient]. *) let points = Poly.init domain_length (fun i -> let idx = remainder + ((i - (quotient + (2 * padding))) * t.shard_length) in if i = 0 then Scalar.copy coefficients.(t.max_polynomial_length - j) else if i <= quotient + (2 * padding) || idx > t.max_polynomial_length (* The second inequality is here in the case [t.max_polynomial_length = 2*t.shard_length] thus [domain_length = 2*t.max_polynomial_length/t.shard_length=4] and [padding=0]. In this case, either [quotient = 2] thus [points = P_{m-j} 0 0 P_{r+l=m-j-l}], or [quotient = 1] thus [points] = P_{m-j} 0 P_{m-j} 0. *) then Scalar.(zero) else coefficients.(idx)) in (* FFT of step 2. *) Evaluations.evaluation_fft domain points in (* Pairwise product of step 3. *) let evaluations = Array.init t.shard_length h_j in let h_j = G1_carray.mul_arrays ~evaluations ~arrays:sj in (* Sum of step 3. *) let sum = h_j.(0) in for i = 1 to t.shard_length - 1 do G1_carray.add_arrays_inplace sum h_j.(i) done ; (* Step 3. Toeplitz matrix-vector multiplication *) G1_carray.interpolation_ecfft_inplace ~domain ~points:sum ; (* Keep first n / l coefficients *) let len = Domain.length domain / 2 in let points = G1_carray.sub sum ~off:0 ~len in (* Step 4. *) let domain = Domain.build t.number_of_shards in G1_carray.(to_array (evaluation_ecfft ~domain ~points)) (* [interpolation_poly root domain evaluations] returns the polynomial P of minimam degree ([< Domains.length domain]) verifying P(root * domain[i]) = evaluations[i]. Requires: - [(Array.length evaluations = Domains.length domain)] *) let interpolation_poly ~root ~domain ~evaluations = assert (Array.length evaluations = Domain.length domain) ; let size = Domain.length domain in let evaluations = FFT.ifft_inplace domain (Evaluations.of_array (size - 1, evaluations)) in (* Computes root_inverse = 1/root. *) let root_inverse = Scalar.inverse_exn root in (* Computes evaluations[i] = evaluations[i] * root_inverse^i. *) snd (Poly.fold_left_map (fun root_pow_inverse coefficient -> ( Scalar.mul root_pow_inverse root_inverse, Scalar.mul coefficient root_pow_inverse )) Scalar.(one) evaluations) (* [verify t commitment srs_point domain root evaluations proof] verifies that P(root * domain.(i)) = evaluations.(i), where - [P = commit t s] for some slot [s] - [l := Array.length evaluations = Domains.length domain] - [srs_point = Srs_g2.get t.srs.raw.srs_g2 l] - [root = w^i] where [w] is a primitive [erasure_encoded_polynomial_length]-th root of unity for [l] dividing [erasure_encoded_polynomial_length] - [domain = (1, z, z^2, ..., z^{l - 1})] where [z = w^{n/l}] is a primitive [l]-th root of unity Implements the "Multi-reveals" section above. *) let verify t ~commitment ~srs_point ~domain ~root ~evaluations ~proof = let open Bls12_381 in (* Compute r_i(x). *) let remainder = interpolation_poly ~root ~domain ~evaluations in (* Compute [r_i(τ)]_1. *) let commitment_remainder = commit t remainder in (* Compute [w^{i * l}]. *) let root_pow = Scalar.pow root (Z.of_int (Domain.length domain)) in (* Compute [τ^l]_2 - [w^{i * l}]_2). *) let commit_srs_point_minus_root_pow = G2.(add srs_point (negate (mul (copy one) root_pow))) in (* Compute [r_i(τ)]_1-c. *) let diff_commits = G1.(add commitment_remainder (negate commitment)) in (* Checks e(c-[r_i(τ)]_1, g_2) ?= e(π, [τ^l]_2 - [w^{i * l}]_2) by checking [0]_1 ?= -e(c-[r_i(τ)]_1, g_2) + e(π, [τ^l]_2 - [w^{i * l}]_2) = e([r_i(τ)]_1-c, g_2) + e(π, [τ^l]_2 - [w^{i * l}]_2). *) Pairing.pairing_check [(diff_commits, G2.(copy one)); (proof, commit_srs_point_minus_root_pow)] (*Batched version of the verify functions, which verify the correctness of opening of multiple multi reveals. Inspired from page 13 of https://eprint.iacr.org/2019/953.pdf With commmitment = c, remainder list = R_i (IFFT of the evaluations, root_list = w_i (indicating the shifts of the subgroup we are verifying evaluations agains, proof_list = pi_i, we generate a pseudo random alpha and verify : e(c, \sum_i w_i R_i,1)*e(sum_i aplha_i*w_i*pi_i,[X]) =? 1 *) let verify_multi t ~commitment ~srs_point ~domain ~root_list ~evaluations_list ~proof_list = let open Bls12_381 in (* Compute r_i(x). *) let remainder_list = List.map2 (fun root evaluations -> interpolation_poly ~root ~domain ~evaluations) root_list evaluations_list in let alpha = (* We use Fiat-Shamir here to get some pseudo randomness. Since alpha is only used on the verifier side we could use real randomness as well. *) List.fold_left (fun transcript proof -> Utils.Transcript.expand shard_proof_t proof transcript) Utils.Transcript.empty proof_list |> Utils.Transcript.expand eval_list_t evaluations_list |> Utils.Transcript.expand shard_proof_t commitment |> Utils.Fr_generation.random_fr |> fst in (* TODO optimize *) let alpha_list = List.init (List.length proof_list) (fun i -> Scalar.pow alpha (Z.of_int i)) in let batched_remainder = List.fold_left2 (fun acc remainder_i alpha_i -> Poly.(acc + mul_by_scalar alpha_i remainder_i)) Poly.zero remainder_list alpha_list in let commitment_remainder_batched = commit t batched_remainder in let root_pow_list = List.map (fun root -> Scalar.pow root (Z.of_int (Domain.length domain))) root_list in let sum_alpha_i = List.fold_left Scalar.add Scalar.zero alpha_list in let batched_commitment = G1.mul commitment sum_alpha_i in let alpha_i_root_pow_i = List.map2 Scalar.mul alpha_list root_pow_list in let w_batched = G1.pippenger (Array.of_list proof_list) (Array.of_list alpha_i_root_pow_i) in let left = G1.( add batched_commitment (add w_batched (negate commitment_remainder_batched))) in let w_batched_2 = G1.( negate @@ pippenger (Array.of_list proof_list) (Array.of_list alpha_list)) in Pairing.pairing_check [(left, G2.one); (w_batched_2, srs_point)]
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>