package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.kzg/utils.ml.html
Source file utils.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module Hash = struct let init () = Hacl_star.EverCrypt.Hash.init ~alg:Hacl_star.SharedDefs.HashDefs.BLAKE2b let update st msg = Hacl_star.EverCrypt.Hash.update ~st ~msg let finish st = Hacl_star.EverCrypt.Hash.finish ~st let hash_bytes bytes = (* select the appropriate BLAKE2b function depending on platform and * always produce a 32 byte digest *) let blake2b msg = let digest_size = 32 in let open Hacl_star in if AutoConfig2.(has_feature VEC256) then Hacl.Blake2b_256.hash msg digest_size else Hacl.Blake2b_32.hash msg digest_size in blake2b (Bytes.concat Bytes.empty bytes) (* generate a seed for Random.full_init from hash of b bytes Also returns the hash of the bytes*) let bytes_to_seed b = let hashed_b = hash_bytes [b] in assert (Bytes.length hashed_b = 32) ; let sys_int_size = Sys.int_size - 1 in let modulo = Z.pow (Z.of_int 2) sys_int_size in (* seed generation based on four int, computed from hashed_b sub_byte ; each ni is Bytes.sub hashed_b i 8 modulo 2**sys.int_size, in order to avoid Z.Overflow when ni is converted to int *) let n0_raw = Z.of_bits (Bytes.sub_string hashed_b 0 8) in let n0 = Z.to_int (Z.erem n0_raw modulo) in let n1_raw = Z.of_bits (Bytes.sub_string hashed_b 8 8) in let n1 = Z.to_int (Z.erem n1_raw modulo) in let n2_raw = Z.of_bits (Bytes.sub_string hashed_b 16 8) in let n2 = Z.to_int (Z.erem n2_raw modulo) in let n3_raw = Z.of_bits (Bytes.sub_string hashed_b 24 8) in let n3 = Z.to_int (Z.erem n3_raw modulo) in ([|n0; n1; n2; n3|], hashed_b) end module Transcript = struct type t = bytes [@@deriving repr] let empty = Bytes.empty let equal = Bytes.equal let of_srs ~len1 ~len2 (srs1, srs2) = let size1, size2 = Bls.(Srs_g1.size srs1, Srs_g2.size srs2) in let open Hash in let st = init () in let srs1 = Bls.Srs_g1.to_array ~len:(min len1 size1) srs1 in Array.iter (fun key -> update st (Bls.G1.to_bytes key)) srs1 ; let srs2 = Bls.Srs_g2.to_array ~len:(min len2 size2) srs2 in Array.iter (fun key -> update st (Bls.G2.to_bytes key)) srs2 ; finish st (* expand a transcript with the elements of a list *) let list_expand repr list transcript = let open Hash in let st = init () in update st transcript ; List.iter (fun a -> update st (Bytes.unsafe_of_string @@ Repr.(unstage @@ to_bin_string repr) a)) list ; finish st let expand repr x transcript = list_expand repr [x] transcript end module Fr_generation = struct open Bls let build_array init next len = let xi = ref init in Array.init len (fun _ -> let i = !xi in xi := next !xi ; i) let powers d x = build_array Scalar.one Scalar.(mul x) d let batch x l = List.fold_left (fun acc y -> Scalar.((x * acc) + y)) Scalar.zero (List.rev l) let build_quadratic_non_residues len = let is_nonresidue n = Z.(equal (Scalar.legendre_symbol n) Z.(-one)) in let rec next n = Scalar.(n + one) |> fun n -> if is_nonresidue n then n else next n in build_array Scalar.one next len (* a is the element to hash * to_bytes_func, add, one is the function of conversion to_bytes, the function of addition, the one compatible with a type * returns x ∈ F built from the hash of a * if hash a not in F, returns hash (a+1) until its value belongs to F *) let rec hash_to_Fr a = let b = Z.to_bits a |> Bytes.of_string in let hashed_b = Hash.hash_bytes [b] in assert (Bytes.length hashed_b = 32) ; let x_fr = Scalar.of_bytes_opt hashed_b in match x_fr with | Some a -> a (* x_fr can be converted *) | None -> hash_to_Fr (Z.succ a) let generate_random_fr ?state () = (match state with None -> () | Some s -> Random.set_state s) ; let n0 = Z.of_int64 @@ Random.int64 Int64.max_int in let n1 = Z.of_int64 @@ Random.int64 Int64.max_int in let n2 = Z.of_int64 @@ Random.int64 Int64.max_int in let n3 = Z.of_int64 @@ Random.int64 Int64.max_int in let n1_64 = Z.(n1 lsl 64) in let n2_128 = Z.(n2 lsl 128) in let n3_192 = Z.(n3 lsl 192) in let gamma_z = Z.(n0 + n1_64 + n2_128 + n3_192) in let gamma_fr = hash_to_Fr gamma_z in gamma_fr (* generate nb_values scalar of Fr based on seed transcript *) let random_fr_list transcript nb_values = let transcript_array, hashed_transcript = Hash.bytes_to_seed transcript in Random.full_init transcript_array ; (List.init nb_values (fun _ -> generate_random_fr ()), hashed_transcript) let random_fr transcript = let l, hashed_transcript = random_fr_list transcript 1 in (List.hd l, hashed_transcript) end let diff_next_power_of_two x = (1 lsl Z.log2up (Z.of_int x)) - x (* The input is expected to be a positive integer. *) let is_power_of_two n = assert (n >= 0) ; n <> 0 && n land (n - 1) = 0 module FFT = struct (* Return the powerset of {3,11,19}. *) let combinations_factors = let rec powerset = function | [] -> [[]] | x :: xs -> let ps = powerset xs in List.concat [ps; List.map (fun ss -> x :: ss) ps] in powerset [3; 11; 19] (* The function works as follows: each product of elements from an element of the powerset of {3,11,19} is multiplied by 2 until the product is greater than [domain_size]. *) let select_fft_domain domain_size = assert (domain_size > 0) ; (* {3,11,19} are small prime factors dividing [Scalar.order - 1], the order of the multiplicative group Fr\{0}. *) let order_multiplicative_group = Z.pred Bls.Scalar.order in assert ( List.for_all (fun x -> Z.(divisible order_multiplicative_group (of_int x))) [3; 11; 19]) ; (* This case is needed because the code in the else clause will return (1, 1, 1) and 1 is not a valid domain size. *) if domain_size = 1 then (2, 2, 1) else (* [domain_from_factors] computes the power of two to be used in the decomposition N = 2^k * factors >= domain_size where [factors] is an element of [combinations_factors]. *) let domain_from_factors (factors : int list) : int * int list = let prod_factors = List.fold_left ( * ) 1 factors in let rec get_next_power_of_two k = if prod_factors lsl k >= domain_size then 1 lsl k else get_next_power_of_two (k + 1) in let next_power_of_two = get_next_power_of_two 0 in let size = prod_factors * next_power_of_two in (size, next_power_of_two :: factors) in let candidate_domains = List.map domain_from_factors combinations_factors in (* The list contains at least an element: the next power of 2 of domain_size *) let domain_length, prime_factor_decomposition = List.fold_left min (List.hd candidate_domains) (List.tl candidate_domains) in let power_of_two = List.hd prime_factor_decomposition in let remainder_product = List.fold_left ( * ) 1 (List.tl prime_factor_decomposition) in (domain_length, power_of_two, remainder_product) let fft_aux ~dft ~fft ~fft_pfa domain coefficients = let size = Domain.length domain in let _, power_of_two, remainder_product = select_fft_domain size in if size = power_of_two || size = remainder_product then (if is_power_of_two size then fft else dft) domain coefficients else let domain1 = Domain.build power_of_two in let domain2 = Domain.build remainder_product in fft_pfa ~domain1 ~domain2 coefficients let fft = fft_aux ~dft:Evaluations.dft ~fft:Evaluations.evaluation_fft ~fft_pfa:Evaluations.evaluation_fft_prime_factor_algorithm let ifft_inplace = fft_aux ~dft:Evaluations.idft ~fft:Evaluations.interpolation_fft ~fft_pfa:Evaluations.interpolation_fft_prime_factor_algorithm end (* Pad array to given size with the last element of the array *) let pad_array array final_size = let size = Array.length array in Array.init final_size (fun i -> if i < size then array.(i) else array.(size - 1)) (* Resize array: return the array, subarray or pad it with its last element *) let resize_array array final_size = let size = Array.length array in if size = final_size then array else if size > final_size then Array.sub array 0 final_size else pad_array array final_size
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>