package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.bls12-381-polynomial/srs.ml.html
Source file srs.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (** Formats used for Srs: - the disk format uses compressed affine coordinates to save space - the memory format uses uncompressed affine coordiantes, because it's required by the pippenger API - the interface and memory representation of an Srs is as carray of affine elements (type G.affine) because they are however the interface that is exposed uses jacobian format (the type G.t). *) (* The Elt signature is extended with pippenger. *) module type GElt_sig = sig module G : Bls12_381.CURVE include Carray.Elt_sig with type t = G.affine (** [uncompress res bs n] reads [n] bytes from [bs] and uncompresses them into an affine point in [res]. Returns 0 if successful. *) val uncompress : G.affine -> bytes -> int (* This function is already bound in Bls12-381 but not exposed. *) (** [pippenger res srs poly offset len] writes in [res] the multiexponentiation of [srs] with the polynomial [poly] starting at [offset] and for [len] elements. Returns 0 if successful. *) val pippenger : G.t -> Bigstringaf.t -> Polynomial.t -> int -> int -> int end module type S = sig type polynomial type t [@@deriving repr] type elt val empty : t (** [get srs i] returns the [i]-th element of [srs] *) val get : t -> int -> elt (** Returns the pippenger ctxt size, i.e. the number of elements the context is supposed to be called with *) val size : t -> int val of_bigstring : ?len:int -> Bigstringaf.t -> (t, [> `End_of_file of string | `Invalid_point of int]) result (** [of_bigstring ~len bs] reads [len] points of G in affine compressed format from [bs] and returns a Srs. If [len] is omitted the whole bs is read. The bigstring can be loaded from a file with: {[ let bigstring_of_file filename = let fd = Unix.openfile filename [ Unix.O_RDONLY ] 0o440 in Bigarray.array1_of_genarray @@ Unix.map_file fd Bigarray.char Bigarray.c_layout false [| (* [-1] means read the whole file *) -1 |] in Srs_g1.of_bigstring (bigstring_of_file ("srs_zcash_g1_21")) (1 lsl 5) ]} or with Lwt: {[ let bigstring_of_file filename = let fd = Unix.openfile filename [ Unix.O_RDONLY ] 0o440 in Lwt_bytes.map_file ~fd ~shared:false () in ]} *) val generate_insecure : int -> Bls12_381.Fr.t -> t (** [pippenger ctxt poly] computes the multiscalar exponentiation using the SRS saved in the context and the coefficients of the given polynomial *) val pippenger : ?offset:int -> ?len:int -> t -> polynomial -> elt (* TODO just for pack *) val to_array : ?len:int -> t -> elt array val of_array : elt array -> t end module Make (Elt : GElt_sig) = struct module G = Elt.G module Carray = Carray.Make (Elt) type polynomial = Polynomial.Polynomial_unsafe.t type t = Carray.t [@@deriving repr] type elt = G.t let size = Carray.length let get p i = Carray.get p i |> G.jacobian_of_affine let to_array ?len data = Carray.to_array ?len data |> Array.map G.jacobian_of_affine let of_array caml_array = Carray.of_array (Array.map G.affine_of_jacobian caml_array) let empty = Carray.empty let generate_insecure d x = let xi = ref G.one in Array.init d (fun _ -> let res = !xi in xi := G.mul !xi x ; res) |> of_array let of_bigstring ?len bs = let size_compressed = Elt.size / 2 in let n = Option.value ~default:(Bigstringaf.length bs / size_compressed) len in let data = Carray.allocate n in let buf = Bytes.create size_compressed in let point = Elt.allocate () in let ( let* ) = Stdlib.Result.bind in let rec loop i = if i = n then Ok () else let* () = try Ok (Bigstringaf.blit_to_bytes bs ~src_off:(i * size_compressed) buf ~dst_off:0 ~len:size_compressed) with _ -> Error (`End_of_file (Format.sprintf "found only %d elements of the required %d" i n)) in let code = Elt.uncompress point buf in let* () = if code <> 0 then Error (`Invalid_point i) else Ok () in Carray.set data point i ; loop (i + 1) in let* () = loop 0 in Ok data let pippenger ?(offset = 0) ?len srs poly = if Polynomial.is_zero poly then G.zero else let poly_length = Polynomial.degree poly + 1 in let len = Option.value ~default:(poly_length - offset) len in if len <= 0 || offset < 0 || poly_length - offset < len || size srs - offset < len then raise @@ Invalid_argument (Format.sprintf "pippenger: invalid len %d or offset %d for size %d" len offset poly_length) ; let res = G.(copy zero) in let return_code = Elt.pippenger res (Carray.to_bigstring srs) poly offset len in assert (return_code = 0) ; res end module Elt_g1 = struct module G = Bls12_381.G1 type t = G.affine let size = G.size_in_bytes let allocate () = G.(affine_of_jacobian zero) let zero = G.(affine_of_jacobian zero) let eq a b = G.eq (G.jacobian_of_affine a) (G.jacobian_of_affine b) external uncompress : t -> bytes -> int = "caml_blst_p1_uncompress_stubs" [@@noalloc] external pippenger : G.t -> Bigstringaf.t -> Polynomial.t -> int -> int -> int = "caml_bls12_381_polynomial_srs_g1_pippenger_stubs" [@@noalloc] end module Elt_g2 = struct module G = Bls12_381.G2 type t = G.affine let size = G.size_in_bytes let allocate () = G.(affine_of_jacobian zero) let zero = G.(affine_of_jacobian zero) let eq a b = G.eq (G.jacobian_of_affine a) (G.jacobian_of_affine b) external uncompress : G.affine -> bytes -> int = "caml_blst_p2_uncompress_stubs" [@@noalloc] external pippenger : G.t -> Bigstringaf.t -> Polynomial.t -> int -> int -> int = "caml_bls12_381_polynomial_srs_g2_pippenger_stubs" [@@noalloc] end module Srs_g1 : S with type elt = Bls12_381.G1.t and type polynomial = Polynomial.t = Make (Elt_g1) module Srs_g2 : S with type elt = Bls12_381.G2.t and type polynomial = Polynomial.t = Make (Elt_g2) module Checks = struct open Bls12_381 let equality g1s g2s = let g1 = Srs_g1.get g1s 0 in let g2 = Srs_g2.get g2s 0 in let size = min (Srs_g1.size g1s) (Srs_g2.size g2s) in for i = 0 to size - 1 do let g1i = Srs_g1.get g1s i in let g2i = Srs_g2.get g2s i in let gt1 = Pairing.pairing g1i g2 in let gt2 = Pairing.pairing g1 g2i in assert (GT.eq gt1 gt2) done let incrementation_g1 g1s g2s = let g2 = Srs_g2.get g2s 0 in let g2x = Srs_g2.get g2s 1 in for i = 0 to Srs_g1.size g1s - 2 do let g1i = Srs_g1.get g1s i in let g1iplus = Srs_g1.get g1s (i + 1) in let gt1 = Pairing.pairing g1i g2x in let gt2 = Pairing.pairing g1iplus g2 in assert (GT.eq gt1 gt2) done let incrementation_g2 g1s g2s = let g1 = Srs_g1.get g1s 0 in let g1x = Srs_g1.get g1s 1 in for i = 0 to Srs_g2.size g2s - 2 do let g2i = Srs_g2.get g2s i in let g2iplus = Srs_g2.get g2s (i + 1) in let gt1 = Pairing.pairing g1x g2i in let gt2 = Pairing.pairing g1 g2iplus in assert (GT.eq gt1 gt2) done let pairings (g1s, g2s) = equality g1s g2s ; incrementation_g1 g1s g2s ; incrementation_g2 g1s g2s end module Srs = struct module Srs_g1 = Srs_g1 module Srs_g2 = Srs_g2 type t = Srs_g1.t * Srs_g2.t let generate_insecure log_g1 log_g2 = let x = Bls12_381.Fr.random () in ( Srs_g1.generate_insecure (1 lsl log_g1) x, Srs_g2.generate_insecure (1 lsl log_g2) x ) let check = Checks.pairings end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>