package ocamlgraph

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file strat.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
(**************************************************************************)
(*                                                                        *)
(*  Ocamlgraph: a generic graph library for OCaml                         *)
(*  Copyright (C) 2004-2010                                               *)
(*  Sylvain Conchon, Jean-Christophe Filliatre and Julien Signoles        *)
(*                                                                        *)
(*  This software is free software; you can redistribute it and/or        *)
(*  modify it under the terms of the GNU Library General Public           *)
(*  License version 2.1, with the special exception on linking            *)
(*  described in file LICENSE.                                            *)
(*                                                                        *)
(*  This software is distributed in the hope that it will be useful,      *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *)
(*                                                                        *)
(**************************************************************************)

(* Signature for graphs *)
module type G = sig

  type t

  module V : Sig.ORDERED_TYPE

  type vertex = V.t

  val mem_vertex : t -> vertex -> bool

  val succ : t -> vertex -> vertex list

  val fold_vertex : (vertex -> 'a -> 'a) -> t -> 'a -> 'a
  val fold_succ : (vertex -> 'a -> 'a) -> t -> vertex -> 'a -> 'a
end


(* Signature for graph add-ons: an initial vertex, final vertices
   and membership of vertices to either true or false,
   i.e. first or second player *)
module type PLAYER = sig

  type t
  type vertex

  val get_initial : t -> vertex
  val is_final : t -> vertex -> bool

  val turn : t -> vertex -> bool

end


(* Signature for strategies : for a given state, the strategy tells
   which state to go to *)
module type STRAT = sig

  type t
  type vertex

  val empty : t
  val add : t -> vertex -> vertex -> t

  val next : t -> vertex -> vertex
  (* Raises Invalid_argument if vertex's image is not defined *)

end


(* Implements strategy algorithms on graphs *)
module Algo (G : G) (P : PLAYER with type vertex = G.vertex)
    (S : STRAT with type vertex = G.vertex) :
sig

  (* coherent_player g p returns true iff
     the completion p is coherent w.r.t.
     the graph g *)
  val coherent_player : G.t -> P.t -> bool

  (* coherent_strat g s returns true iff
     the strategy s is coherent w.r.t.
     the graph g *)
  val coherent_strat : G.t -> S.t -> bool

  (* game g p a b returns true iff a wins in g
     given the completion p (i.e. the game
     goes through a final state). *)
  val game : G.t -> P.t -> S.t -> S.t -> bool

  (* strategy g p s returns true iff s wins in g
     given the completion p, whatever strategy
     plays the other player. *)
  val strategy : G.t -> P.t -> S.t -> bool

  (* strategyA g p returns true iff there
     exists a winning stragegy for the true
     player. In this case, the winning
     strategy is provided. *)
  val strategyA : G.t -> P.t -> (bool * S.t)
end = struct

  module SetV = Set.Make (G.V)


  let rec eq l1 l2 = match l1, l2 with
      [], [] -> true
    | e1 :: l1', e2 :: l2' ->
      (G.V.compare e1 e2 = 0) && (eq l1' l2')
    | _ -> false

  let rec eq_mem i l1 l2 = match l1, l2 with
      [], [] -> (true, false)
    | e1 :: l1', e2 :: l2' ->
      if G.V.compare e1 e2 = 0 then
        if G.V.compare e1 i = 0 then (eq l1' l2', true)
        else eq_mem i l1' l2'
      else (false, false)
    | _ -> (false, false)

  let puit g v = match G.succ g v with
      [] -> true
    | _ -> false


  let get_finals g p =
    let f a l =
      if P.is_final p a then a :: l
      else l
    in G.fold_vertex f g []


  let coherent_player g p =
    G.mem_vertex g (P.get_initial p)


  let coherent_strat g s =
    let f v b =
      try
        let v' = S.next s v in
        b && (G.mem_vertex g v')
      with Invalid_argument _ -> true
    in
    G.fold_vertex f g true


  let game _ p a b =

    let rec game_aux l pi =
      let continue x =
        try
          game_aux (SetV.add pi l) (S.next x pi)
        with Invalid_argument _ -> false
      in
      (P.is_final p pi) ||
      (if SetV.mem pi l then false
       else
       if P.turn p pi then continue a
       else continue b)

    in
    game_aux SetV.empty (P.get_initial p)


  let attract1 g p s l =
    let f v l1 =
      if not (List.mem v l1) then
        if P.turn p v then
          try
            if List.mem (S.next s v) l1 then v :: l1
            else l1
          with Invalid_argument _ -> l1
        else
        if puit g v then l1
        else
        if G.fold_succ (fun v' b -> b && (List.mem v' l1)) g v true
        then v :: l1
        else l1
      else l1
    in
    G.fold_vertex f g l


  let strategy g p s =

    let rec strategy_aux l1 l2 =
      let (b1, b2) = eq_mem (P.get_initial p) l1 l2 in
      if b1 then b2
      else strategy_aux (attract1 g p s l1) l1

    in
    let finaux = get_finals g p in
    strategy_aux (attract1 g p s finaux) finaux


  let attract g p (l, l') =
    let f v (l1, l1') =
      if not (List.mem v l1) then
        if P.turn p v then
          let f' v' l2 =
            (match l2 with
               [] ->
               if List.mem v' l1 then [v']
               else []
             | _ -> l2) in
          (match G.fold_succ f' g v [] with
             [] -> (l1, l1')
           | v' :: _ -> (v :: l1, S.add l1' v v' ))
        else
        if puit g v then (l1, l1')
        else
        if G.fold_succ (fun v' b -> b && (List.mem v' l1)) g v true
        then (v :: l1, l1')
        else (l1, l1')
      else (l1, l1')
    in
    G.fold_vertex f g (l, l')


  let strategyA g p =

    let rec strategyA_aux l1 l2 f =
      let (b1, b2) = eq_mem (P.get_initial p) l1 l2 in
      if b1 then (b2, f)
      else
        let (new_l1, new_f) = attract g p (l1, f) in
        strategyA_aux new_l1 l1 new_f

    in
    let finaux = get_finals g p in
    let (l, r) = attract g p (finaux, S.empty) in
    strategyA_aux l finaux r;;

end
OCaml

Innovation. Community. Security.