package ocaml-compiler

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file dynarray.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
(**************************************************************************)
(*                                                                        *)
(*                                 OCaml                                  *)
(*                                                                        *)
(*           Gabriel Scherer, projet Partout, INRIA Paris-Saclay          *)
(*                                                                        *)
(*   Copyright 2022 Institut National de Recherche en Informatique et     *)
(*     en Automatique.                                                    *)
(*                                                                        *)
(*   All rights reserved.  This file is distributed under the terms of    *)
(*   the GNU Lesser General Public License version 2.1, with the          *)
(*   special exception on linking described in the file LICENSE.          *)
(*                                                                        *)
(**************************************************************************)

(* {2 The type ['a t]}

   A dynamic array is represented using a backing array [arr] and
   a [length]. It behaves as an array of size [length] -- the indices
   from [0] to [length - 1] included contain user-provided values and
   can be [get] and [set] -- but the length may also change in the
   future by adding or removing elements at the end.

   We use the following concepts;
   - capacity: the length of the backing array:
     [Array.length  arr]
   - live space: the portion of the backing array with
     indices from [0] to [length - 1] included.
   - empty space: the portion of the backing array
     from [length] to the end of the backing array.

   {2 Dummies}

   We should not keep a user-provided value in the empty space, as
   this could extend its lifetime and may result in memory leaks of
   arbitrary size. Functions that remove elements from the dynamic
   array, such as [pop_last] or [truncate], must really erase the
   element from the backing array.

   To do so, we use an unsafe/magical [dummy] in the empty array. This
   dummy is *not* type-safe, it is not a valid value of type ['a], so
   we must be very careful never to return it to the user. After
   accessing any element of the array, we must check that it is not
   the dummy. In particular, this dummy must be distinct from any
   other value the user could provide -- we ensure this by using
   a dynamically-allocated mutable reference as our dummy.

   {2 Invariants and valid states}

   We enforce the invariant that [length >= 0] at all times.
   we rely on this invariant for optimization.

   The following conditions define what we call a "valid" dynarray:
   - valid length: [length <= Array.length arr]
   - no missing element in the live space:
     forall i, [0 <= i < length] implies [arr.(i) != dummy]
   - no element in the empty space:
     forall i, [length <= i < Array.length arr] implies [arr.(i) == dummy]

   Unfortunately, we cannot easily enforce validity as an invariant in
   presence of concurrent updates. We can thus observe dynarrays in
   "invalid states". Our implementation may raise exceptions or return
   incorrect results on observing invalid states, but of course it
   must preserve memory safety.

   {3 Dummies and flat float arrays}

   OCaml performs a dynamic optimization of the representation of
   float arrays, which is incompatible with our use of a dummy
   value: if we initialize an array with user-provided elements,
   it may get an optimized into a "flat float array", and
   writing our non-float dummy into it would crash.

   To avoid interactions between unsafe dummies and flat float arrays,
   we ensure that the arrays that we use are never initialized with
   floating point values. In that case we will always get a non-flat
   array, and storing float values inside those is safe
   (if less efficient). We call this the 'no-flat-float' invariant.

   {3 Marshalling dummies}

   There is a risk of interaction between dummies and
   marshalling. If we use a global dynamically-allocated dummy
   for the whole module, we are not robust to a user marshalling
   a dynarray and unmarshalling it inside another program with
   a different global dummy.

   The trick is to store the dummy that we use in the dynarray
   metadata record. Marshalling the dynarray will then preserve the
   physical equality between this dummy field and dummy elements in
   the array, as expected.

   This reasoning assumes that marshalling does not use the
   [No_sharing] flag. To ensure that users do not marshal dummies
   with [No_sharing], we use a recursive/cyclic dummy that would make
   such marshalling loop forever. (This is not nice, but better than
   segfaulting later for obscure reasons.)
*)

(** The [Dummy] module encapsulates the low-level magic we use
    for dummies, providing a strongly-typed API that:
    - makes it explicit where dummies are used
    - makes it hard to mistakenly mix data using distinct dummies,
      which would be unsound *)
module Dummy : sig

  (** {4 Dummies} *)

  type 'stamp dummy
  (** The type of dummies is parametrized by a ['stamp] variable,
      so that two dummies with different stamps cannot be confused
      together. *)

  type fresh_dummy = Fresh : 'stamp dummy -> fresh_dummy
  val fresh : unit -> fresh_dummy
  (** The type of [fresh] enforces a fresh/unknown/opaque stamp for
      the returned dummy, distinct from all previous stamps. *)


  (** {4 Values or dummies} *)

  type ('a, 'stamp) with_dummy
  (** a value of type [('a, 'stamp) with_dummy] is either a proper
      value of type ['a] or a dummy with stamp ['stamp]. *)

  val of_val : 'a -> ('a, 'stamp) with_dummy
  val of_dummy : 'stamp dummy -> ('a, 'stamp) with_dummy

  val is_dummy : ('a, 'stamp) with_dummy -> 'stamp dummy -> bool
  val unsafe_get : ('a, 'stamp) with_dummy -> 'a
  (** [unsafe_get v] can only be called safely if [is_dummy v dummy]
      is [false].

      We could instead provide
      [val find : ('a, 'stamp) with_dummy -> ('a, 'stamp dummy) result]
      but this would involve intermediary allocations.

      {[match find x with
        | None -> ...
        | Some v -> ...]}
      can instead be written
      {[if Dummy.is_dummy x
        then ...
         else let v = Dummy.unsafe_get x in ...]}
  *)

  (** {4 Arrays of values or dummies} *)
  module Array : sig
    val make :
      int -> 'a -> dummy:'stamp dummy ->
      ('a, 'stamp) with_dummy array

    val init :
      int -> (int -> 'a) -> dummy:'stamp dummy ->
      ('a, 'stamp) with_dummy array

    val copy : 'a array -> dummy:'stamp dummy -> ('a, 'stamp) with_dummy array

    val unsafe_nocopy :
      'a array -> dummy:'stamp dummy ->
      ('a, 'stamp) with_dummy array
    (** [unsafe_nocopy] assumes that the input array was created
        locally and will not be used anymore (in the spirit of
        [Bytes.unsafe_to_string]), and avoids a copy of the input
        array when possible. *)

    val blit_array :
      'a array -> int ->
      ('a, 'stamp) with_dummy array -> int ->
      len:int ->
      unit

    val blit :
      ('a, 'stamp1) with_dummy array -> 'stamp1 dummy -> int ->
      ('a, 'stamp2) with_dummy array -> 'stamp2 dummy -> int ->
      len:int ->
      unit

    val prefix :
      ('a, 'stamp) with_dummy array ->
      int ->
      ('a, 'stamp) with_dummy array

    val extend :
      ('a, 'stamp) with_dummy array ->
      length:int ->
      dummy:'stamp dummy ->
      new_capacity:int ->
      ('a, 'stamp) with_dummy array
  end
end = struct
  (* We want to use a cyclic value so that No_sharing marshalling
     fails loudly, but we want also comparison of dynarrays to work
     as expected, and not loop forever.

     Our approach is to use an object value that contains a cycle.
     Objects are compared by their unique id, so comparison is not
     structural and will not loop on the cycle, but marshalled
     by content, so marshalling without sharing will fail on the cycle.

     (It is a bit tricky to build an object that does not contain
     functional values where marshalling fails, see [fresh ()] below
     for how we do it.) *)
  type 'stamp dummy = < >
  type fresh_dummy = Fresh : 'stamp dummy -> fresh_dummy

  let fresh () =
    (* dummies and marshalling: we intentionally
       use a cyclic value here. *)
    let r = ref None in
    ignore
      (* hack: this primitive is required by the object expression below,
         ensure that 'make depend' notices it. *)
      CamlinternalOO.create_object_opt;
    let dummy = object
      val x = r
    end in
    r := Some dummy;
    Fresh dummy

  type ('a, 'stamp) with_dummy = 'a

  let of_val v = v

  let of_dummy (type a stamp) (dummy : stamp dummy) =
    (Obj.magic dummy : (a, stamp) with_dummy)

  let is_dummy v dummy =
    v == of_dummy dummy

  let unsafe_get v =
    v

  module Array = struct
    let make n x ~dummy =
      if Obj.(tag (repr x) <> double_tag) then
        Array.make n (of_val x)
      else begin
        let arr = Array.make n (of_dummy dummy) in
        Array.fill arr 0 n (of_val x);
        arr
      end

    let copy a ~dummy =
      if Obj.(tag (repr a) <> double_array_tag) then
        Array.copy a
      else begin
        let n = Array.length a in
        let arr = Array.make n (of_dummy dummy) in
        for i = 0 to n - 1 do
          Array.unsafe_set arr i
            (of_val (Array.unsafe_get a i));
        done;
        arr
      end

    let unsafe_nocopy a ~dummy =
      if Obj.(tag (repr a) <> double_array_tag) then
        a
      else copy a ~dummy

    let init n f ~dummy =
      let arr = Array.make n (of_dummy dummy) in
      for i = 0 to n - 1 do
        Array.unsafe_set arr i (of_val (f i))
      done;
      arr

    let blit_array src src_pos dst dst_pos ~len =
      if Obj.(tag (repr src) <> double_array_tag) then
        Array.blit src src_pos dst dst_pos len
      else begin
        for i = 0 to len - 1 do
          dst.(dst_pos + i) <- of_val src.(src_pos + i)
        done;
      end

    let blit src src_dummy src_pos dst dst_dummy dst_pos ~len =
      if src_dummy == dst_dummy then
        Array.blit src src_pos dst dst_pos len
      else begin
        if len < 0
           || src_pos < 0
           || src_pos + len < 0 (* overflow check *)
           || src_pos + len > Array.length src
           || dst_pos < 0
           || dst_pos + len < 0 (* overflow check *)
           || dst_pos + len > Array.length dst
        then begin
          (* We assume that the caller has already checked this and
             will raise a proper error. The check here is only for
             memory safety, it should not be reached and it is okay if
             the error is uninformative. *)
          assert false;
        end;
        (* We failed the check [src_dummy == dst_dummy] above, so we
           know that in fact [src != dst] -- two dynarrays with
           distinct dummies cannot share the same backing arrays. *)
        assert (src != dst);
        (* In particular, the source and destination arrays cannot
           overlap, so we can always copy in ascending order without
           risking overwriting an element needed later. *)
        for i = 0 to len - 1 do
          Array.unsafe_set dst (dst_pos + i)
            (Array.unsafe_get src (src_pos + i));
        done
      end

    let prefix arr n =
      (* Note: the safety of the [Array.sub] call below, with respect to
         our 'no-flat-float' invariant, relies on the fact that
         [Array.sub] checks the tag of the input array, not whether the
         elements themselves are float.

         To avoid relying on this undocumented property we could use
         [Array.make length dummy] and then set values in a loop, but this
         would result in [caml_modify] rather than [caml_initialize]. *)
      Array.sub arr 0 n

    let extend arr ~length ~dummy ~new_capacity =
      (* 'no-flat-float' invariant: we initialise the array with our
         non-float dummy to get a non-flat array. *)
      let new_arr = Array.make new_capacity (of_dummy dummy) in
      Array.blit arr 0 new_arr 0 length;
      new_arr
  end
end

type 'a t = Pack : ('a, 'stamp) t_ -> 'a t [@@unboxed]
and ('a, 'stamp) t_ = {
  mutable length : int;
  mutable arr : ('a, 'stamp) Dummy.with_dummy array;
  dummy : 'stamp Dummy.dummy;
}

let global_dummy = Dummy.fresh ()
(* We need to ensure that dummies are never exposed to the user as
   values of type ['a]. Including the dummy in the dynarray metadata
   is necessary for marshalling to behave correctly, but there is no
   obligation to create a fresh dummy for each new dynarray, we can
   use a global dummy.

   On the other hand, unmarshalling may precisely return a dynarray
   with another dummy: we cannot assume that all dynarrays use this
   global dummy. The existential hiding of the dummy ['stamp]
   parameter helps us to avoid this assumption. *)

module Error = struct
  let[@inline never] index_out_of_bounds f ~i ~length =
    if length = 0 then
      Printf.ksprintf invalid_arg
        "Dynarray.%s: index %d out of bounds (empty dynarray)"
        f i
    else
      Printf.ksprintf invalid_arg
        "Dynarray.%s: index %d out of bounds (0..%d)"
        f i (length - 1)

  let[@inline never] negative_length_requested f n =
    Printf.ksprintf invalid_arg
      "Dynarray.%s: negative length %d requested"
      f n

  let[@inline never] negative_capacity_requested f n =
    Printf.ksprintf invalid_arg
      "Dynarray.%s: negative capacity %d requested"
      f n

  let[@inline never] requested_length_out_of_bounds f requested_length =
    Printf.ksprintf invalid_arg
      "Dynarray.%s: cannot grow to requested length %d (max_array_length is %d)"
      f requested_length Sys.max_array_length

  (* When observing an invalid state ([missing_element],
     [invalid_length]), we do not give the name of the calling function
     in the error message, as the error is related to invalid operations
     performed earlier, and not to the callsite of the function
     itself. *)

  let invalid_state_description =
    "Invalid dynarray (unsynchronized concurrent length change)"

  let[@inline never] missing_element ~i ~length =
    Printf.ksprintf invalid_arg
      "%s: missing element at position %d < length %d"
      invalid_state_description
      i length

  let[@inline never] invalid_length ~length ~capacity =
    Printf.ksprintf invalid_arg
      "%s: length %d > capacity %d"
      invalid_state_description
      length capacity

  let[@inline never] length_change_during_iteration f ~expected ~observed =
    Printf.ksprintf invalid_arg
      "Dynarray.%s: a length change from %d to %d occurred during iteration"
      f expected observed

  (* When an [Empty] element is observed unexpectedly at index [i],
     it may be either an out-of-bounds access or an invalid-state situation
     depending on whether [i <= length]. *)
  let[@inline never] unexpected_empty_element f ~i ~length =
    if i < length then
      missing_element ~i ~length
    else
      index_out_of_bounds f ~i ~length

  let[@inline never] empty_dynarray f =
    Printf.ksprintf invalid_arg
      "Dynarray.%s: empty array" f
end

(* Detecting iterator invalidation.

   See {!iter} below for a detailed usage example.
*)
let check_same_length f (Pack a) ~length =
  let length_a = a.length in
  if length <> length_a then
    Error.length_change_during_iteration f
      ~expected:length ~observed:length_a

(** Careful unsafe access. *)

(* Postcondition on non-exceptional return:
   [length <= Array.length arr] *)
let[@inline always] check_valid_length length arr =
  let capacity = Array.length arr in
  if length > capacity then
    Error.invalid_length ~length ~capacity

(* Precondition: [0 <= i < length <= Array.length arr]

   This precondition is typically guaranteed by knowing
   [0 <= i < length] and calling [check_valid_length length arr].*)
let[@inline always] unsafe_get arr ~dummy ~i ~length =
  let v = Array.unsafe_get arr i in
  if Dummy.is_dummy v dummy
  then Error.missing_element ~i ~length
  else Dummy.unsafe_get v

(** {1:dynarrays Dynamic arrays} *)

let create () =
  let Dummy.Fresh dummy = global_dummy in
  Pack {
    length = 0;
    arr = [| |];
    dummy = dummy;
  }

let make n x =
  if n < 0 then Error.negative_length_requested "make" n;
  let Dummy.Fresh dummy = global_dummy in
  let arr = Dummy.Array.make n x ~dummy in
  Pack {
    length = n;
    arr;
    dummy;
  }

let init (type a) n (f : int -> a) : a t =
  if n < 0 then Error.negative_length_requested "init" n;
  let Dummy.Fresh dummy = global_dummy in
  let arr = Dummy.Array.init ~dummy n f in
  Pack {
    length = n;
    arr;
    dummy;
  }

let get (type a) (Pack a : a t) i =
  (* This implementation will propagate an [Invalid_argument] exception
     from array lookup if the index is out of the backing array,
     instead of using our own [Error.index_out_of_bounds]. This is
     allowed by our specification, and more efficient -- no need to
     check that [length a <= capacity a] in the fast path. *)
  let v = a.arr.(i) in
  if Dummy.is_dummy v a.dummy
  then Error.unexpected_empty_element "get" ~i ~length:a.length
  else Dummy.unsafe_get v

let set (Pack a) i x =
  let {arr; length; _} = a in
  if i >= length then Error.index_out_of_bounds "set" ~i ~length
  else arr.(i) <- Dummy.of_val x

let length (Pack a) = a.length

let is_empty (Pack a) = (a.length = 0)

let copy (type a) (Pack {length; arr; dummy} : a t) : a t =
  check_valid_length length arr;
  (* use [length] as the new capacity to make
     this an O(length) operation. *)
  let arr = Dummy.Array.prefix arr length in
  Pack { length; arr; dummy }

let get_last (Pack a) =
  let {arr; length; dummy} = a in
  check_valid_length length arr;
  (* We know [length <= capacity a]. *)
  if length = 0 then Error.empty_dynarray "get_last";
  (* We know [length > 0]. *)
  unsafe_get arr ~dummy ~i:(length - 1) ~length

let find_last (Pack a) =
  let {arr; length; dummy} = a in
  check_valid_length length arr;
  (* We know [length <= capacity a]. *)
  if length = 0 then None
  else
    (* We know [length > 0]. *)
    Some (unsafe_get arr ~dummy ~i:(length - 1) ~length)

(** {1:removing Removing elements} *)

let pop_last (Pack a) =
  let {arr; length; dummy} = a in
  check_valid_length length arr;
  (* We know [length <= capacity a]. *)
  if length = 0 then raise Not_found;
  let last = length - 1 in
  (* We know [length > 0] so [last >= 0]. *)
  let v = unsafe_get arr ~dummy ~i:last ~length in
  Array.unsafe_set arr last (Dummy.of_dummy dummy);
  a.length <- last;
  v

let pop_last_opt a =
  match pop_last a with
  | exception Not_found -> None
  | x -> Some x

let remove_last (Pack a) =
  let last = a.length - 1 in
  if last >= 0 then begin
    a.length <- last;
    a.arr.(last) <- Dummy.of_dummy a.dummy;
  end

let truncate (Pack a) n =
  if n < 0 then Error.negative_length_requested "truncate" n;
  let {arr; length; dummy} = a in
  if length <= n then ()
  else begin
    a.length <- n;
    Array.fill arr n (length - n) (Dummy.of_dummy dummy)
  end

let clear a = truncate a 0


(** {1:capacity Backing array and capacity} *)

let capacity (Pack a) = Array.length a.arr

let next_capacity n =
  let n' =
    (* For large values of n, we use 1.5 as our growth factor.

       For smaller values of n, we grow more aggressively to avoid
       reallocating too much when accumulating elements into an empty
       array.

       The constants "512 words" and "8 words" below are taken from
         https://github.com/facebook/folly/blob/
           c06c0f41d91daf1a6a5f3fc1cd465302ac260459/folly/FBVector.h#L1128-L1157
    *)
    if n <= 512 then n * 2
    else n + n / 2
  in
  (* jump directly from 0 to 8 *)
  min (max 8 n') Sys.max_array_length

let ensure_capacity (Pack a) capacity_request =
  let arr = a.arr in
  let cur_capacity = Array.length arr in
  if capacity_request < 0 then
    Error.negative_capacity_requested "ensure_capacity" capacity_request
  else if cur_capacity >= capacity_request then
    (* This is the fast path, the code up to here must do as little as
       possible. (This is why we don't use [let {arr; length} = a] as
       usual, the length is not needed in the fast path.)*)
    ()
  else begin
    if capacity_request > Sys.max_array_length then
      Error.requested_length_out_of_bounds "ensure_capacity" capacity_request;
    let new_capacity =
      (* We use either the next exponential-growth strategy,
         or the requested strategy, whichever is bigger.

         Compared to only using the exponential-growth strategy, this
         lets us use less memory by avoiding any overshoot whenever
         the capacity request is noticeably larger than the current
         capacity.

         Compared to only using the requested capacity, this avoids
         losing the amortized guarantee: we allocated "exponentially
         or more", so the amortization holds. In particular, notice
         that repeated calls to [ensure_capacity a (length a + 1)]
         will have amortized-linear rather than quadratic complexity.
      *)
      max (next_capacity cur_capacity) capacity_request in
    assert (new_capacity > 0);
    let new_arr =
      Dummy.Array.extend arr ~length:a.length ~dummy:a.dummy ~new_capacity in
    a.arr <- new_arr;
    (* postcondition: *)
    assert (0 <= capacity_request);
    assert (capacity_request <= Array.length new_arr);
  end

let ensure_extra_capacity a extra_capacity_request =
  ensure_capacity a (length a + extra_capacity_request)

let fit_capacity (Pack a) =
  if Array.length a.arr = a.length
  then ()
  else a.arr <- Dummy.Array.prefix a.arr a.length

let set_capacity (Pack a) n =
  if n < 0 then
    Error.negative_capacity_requested "set_capacity" n;
  let arr = a.arr in
  let cur_capacity = Array.length arr in
  if n < cur_capacity then begin
    a.length <- min a.length n;
    a.arr <- Dummy.Array.prefix arr n;
  end
  else if n > cur_capacity then begin
    a.arr <-
      Dummy.Array.extend arr ~length:a.length ~dummy:a.dummy ~new_capacity:n;
  end

let reset (Pack a) =
  a.length <- 0;
  a.arr <- [||]

(** {1:adding Adding elements} *)

(* We chose an implementation of [add_last a x] that behaves correctly
   in presence of asynchronous / re-entrant code execution around
   allocations and poll points: if another thread or a callback gets
   executed on allocation, we add the element at the new end of the
   dynamic array.

   (We do not give the same guarantees in presence of concurrent
   parallel updates, which are much more expensive to protect
   against.)
*)

(* [add_last_if_room a v] only writes the value if there is room, and
   returns [false] otherwise. *)
let[@inline] add_last_if_room (Pack a) v =
  let {arr; length; _} = a in
  (* we know [0 <= length] *)
  if length >= Array.length arr then false
  else begin
    (* we know [0 <= length < Array.length arr] *)
    a.length <- length + 1;
    Array.unsafe_set arr length (Dummy.of_val v);
    true
  end

let add_last a x =
  if add_last_if_room a x then ()
  else begin
    (* slow path *)
    let rec grow_and_add a x =
      ensure_extra_capacity a 1;
      if not (add_last_if_room a x)
      then grow_and_add a x
    in grow_and_add a x
  end

let rec append_list a li =
  match li with
  | [] -> ()
  | x :: xs -> add_last a x; append_list a xs

let append_iter a iter b =
  iter (fun x -> add_last a x) b

let append_seq a seq =
  Seq.iter (fun x -> add_last a x) seq

(* blitting *)

let blit_assume_room
    (Pack src) src_pos src_length
    (Pack dst) dst_pos dst_length
    blit_length
=
  (* The caller of [blit_assume_room] typically calls
     [ensure_capacity] right before. This could run asynchronous
     code. We want to fail reliably on any asynchronous length change,
     as it may invalidate the source and target ranges provided by the
     user. So we double-check that the lengths have not changed.  *)
  let src_arr = src.arr in
  let dst_arr = dst.arr in
  check_same_length "blit" (Pack src) ~length:src_length;
  check_same_length "blit" (Pack dst) ~length:dst_length;
  if dst_pos + blit_length > dst_length then begin
    dst.length <- dst_pos + blit_length;
  end;
  (* note: [src] and [dst] may be equal when self-blitting, so
     [src.length] may have been mutated here. *)
  Dummy.Array.blit
    src_arr src.dummy src_pos
    dst_arr dst.dummy dst_pos
    ~len:blit_length

let blit ~src ~src_pos ~dst ~dst_pos ~len =
  let src_length = length src in
  let dst_length = length dst in
  if len < 0 then
    Printf.ksprintf invalid_arg
      "Dynarray.blit: invalid blit length (%d)"
      len;
  if src_pos < 0 || src_pos + len > src_length then
    Printf.ksprintf invalid_arg
      "Dynarray.blit: invalid source region (%d..%d) \
       in source dynarray of length %d"
      src_pos (src_pos + len) src_length;
  if dst_pos < 0 || dst_pos > dst_length then
    Printf.ksprintf invalid_arg
      "Dynarray.blit: invalid target region (%d..%d) \
       in target dynarray of length %d"
      dst_pos (dst_pos + len) dst_length;
  ensure_capacity dst (dst_pos + len);
  blit_assume_room
    src src_pos src_length
    dst dst_pos dst_length
    len

(* append_array: same [..._if_room] and loop logic as [add_last]. *)

let append_array_if_room (Pack a) b =
  let {arr; length = length_a; _} = a in
  let length_b = Array.length b in
  if length_a + length_b > Array.length arr then false
  else begin
    (* Note: we intentionally update the length *before* filling the
       elements. This "reserve before fill" approach provides better
       behavior than "fill then notify" in presence of reentrant
       modifications (which may occur on [blit] below):

       - If some code asynchronously adds new elements after this
         length update, they will go after the space we just reserved,
         and in particular no addition will be lost. If instead we
         updated the length after the loop, any asynchronous addition
         during the loop could be erased or erase one of our additions,
         silently, without warning the user.

       - If some code asynchronously iterates on the dynarray, or
         removes elements, or otherwise tries to access the
         reserved-but-not-yet-filled space, it will get a clean "missing
         element" error. This is worse than with the fill-then-notify
         approach where the new elements would only become visible
         (to iterators, for removal, etc.) altogether at the end of
         loop.

       To summarise, "reserve before fill" is better on add-add races,
       and "fill then notify" is better on add-remove or add-iterate
       races. But the key difference is the failure mode:
       reserve-before fails on add-remove or add-iterate races with
       a clean error, while notify-after fails on add-add races with
       silently disappearing data. *)
    a.length <- length_a + length_b;
    Dummy.Array.blit_array b 0 arr length_a ~len:length_b;
    true
  end

let append_array a b =
  if append_array_if_room a b then ()
  else begin
    (* slow path *)
    let rec grow_and_append a b =
      ensure_extra_capacity a (Array.length b);
      if not (append_array_if_room a b)
      then grow_and_append a b
    in grow_and_append a b  end

(* append: same [..._if_room] and loop logic as [add_last]. *)

(* It is a programming error to mutate the length of [b] during a call
   to [append a b]. To detect this mistake we keep track of the length
   of [b] throughout the computation and check it that does not
   change.
*)
let append_if_room (Pack a) b ~length_b =
  let {arr = arr_a; length = length_a; _} = a in
  if length_a + length_b > Array.length arr_a then false
  else begin
    (* blit [0..length_b-1]
       into [length_a..length_a+length_b-1]. *)
    blit_assume_room
      b 0 length_b
      (Pack a) length_a length_a
      length_b;
    check_same_length "append" b ~length:length_b;
    true
  end

let append a b =
  let length_b = length b in
  if append_if_room a b ~length_b then ()
  else begin
    (* slow path *)
    let rec grow_and_append a b ~length_b =
      ensure_extra_capacity a length_b;
      (* Eliding the [check_same_length] call below would be wrong in
         the case where [a] and [b] are aliases of each other, we
         would get into an infinite loop instead of failing.

         We could push the call to [append_if_room] itself, but we
         prefer to keep it in the slow path.  *)
      check_same_length "append" b ~length:length_b;
      if not (append_if_room a b ~length_b)
      then grow_and_append a b ~length_b
    in grow_and_append a b ~length_b
  end



(** {1:iteration Iteration} *)

(* The implementation choice that we made for iterators is the one
   that maximizes efficiency by avoiding repeated bound checking: we
   check the length of the dynamic array once at the beginning, and
   then only operate on that portion of the dynarray, ignoring
   elements added in the meantime.

   The specification states that it is a programming error to mutate
   the length of the array during iteration. We check for this and
   raise an error on size change.
   Note that we may still miss some transient state changes that cancel
   each other and leave the length unchanged at the next check.
*)

let iter_ f k a =
  let Pack {arr; length; dummy} = a in
  (* [check_valid_length length arr] is used for memory safety, it
     guarantees that the backing array has capacity at least [length],
     allowing unsafe array access.

     [check_same_length] is used for correctness, it lets the function
     fail more often if we discover the programming error of mutating
     the length during iteration.

     We could, naively, call [check_same_length] at each iteration of
     the loop (before or after, or both). However, notice that this is
     not necessary to detect the removal of elements from [a]: if
     elements have been removed by the time the [for] loop reaches
     them, then [unsafe_get] will itself fail with an [Invalid_argument]
     exception. We only need to detect the addition of new elements to
     [a] during iteration, and for this it is enough to call
     [check_same_length] once at the end.

     Calling [check_same_length] more often could catch more
     programming errors, but the only errors that we miss with this
     optimization are those that keep the array size constant --
     additions and deletions that cancel each other. We consider this
     an acceptable tradeoff.
  *)
  check_valid_length length arr;
  for i = 0 to length - 1 do
    k (unsafe_get arr ~dummy ~i ~length);
  done;
  check_same_length f a ~length

let iter k a =
  iter_ "iter" k a

let iteri k a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  for i = 0 to length - 1 do
    k i (unsafe_get arr ~i ~dummy ~length);
  done;
  check_same_length "iteri" a ~length

let map f a =
  let Pack {arr = arr_in; length; dummy} = a in
  check_valid_length length arr_in;
  let arr_out = Array.make length (Dummy.of_dummy dummy) in
  for i = 0 to length - 1 do
    Array.unsafe_set arr_out i
      (Dummy.of_val (f (unsafe_get arr_in ~dummy ~i ~length)))
  done;
  let res = Pack {
    length;
    arr = arr_out;
    dummy;
  } in
  check_same_length "map" a ~length;
  res

let mapi f a =
  let Pack {arr = arr_in; length; dummy} = a in
  check_valid_length length arr_in;
  let arr_out = Array.make length (Dummy.of_dummy dummy) in
  for i = 0 to length - 1 do
    Array.unsafe_set arr_out i
      (Dummy.of_val (f i (unsafe_get arr_in ~dummy ~i ~length)))
  done;
  let res = Pack {
    length;
    arr = arr_out;
    dummy;
  } in
  check_same_length "mapi" a ~length;
  res

let fold_left f acc a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let r = ref acc in
  for i = 0 to length - 1 do
    let v = unsafe_get arr ~dummy ~i ~length in
    r := f !r v;
  done;
  check_same_length "fold_left" a ~length;
  !r

let fold_right f a acc =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let r = ref acc in
  for i = length - 1 downto 0 do
    let v = unsafe_get arr ~dummy ~i ~length in
    r := f v !r;
  done;
  check_same_length "fold_right" a ~length;
  !r

let exists p a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let rec loop p arr dummy i length =
    if i = length then false
    else
      p (unsafe_get arr ~dummy ~i ~length)
      || loop p arr dummy (i + 1) length
  in
  let res = loop p arr dummy 0 length in
  check_same_length "exists" a ~length;
  res

let for_all p a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let rec loop p arr dummy i length =
    if i = length then true
    else
      p (unsafe_get arr ~dummy ~i ~length)
      && loop p arr dummy (i + 1) length
  in
  let res = loop p arr dummy 0 length in
  check_same_length "for_all" a ~length;
  res

let filter f a =
  let b = create () in
  iter_ "filter" (fun x -> if f x then add_last b x) a;
  b

let filter_map f a =
  let b = create () in
  iter_ "filter_map" (fun x ->
    match f x with
    | None -> ()
    | Some y -> add_last b y
  ) a;
  b

let mem x a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let rec loop i =
    if i = length then false
    else if Stdlib.compare (unsafe_get arr ~dummy ~i ~length) x = 0 then
      true
    else loop (succ i)
  in
  let res = loop 0 in
  check_same_length "mem" a ~length;
  res

let memq x a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let rec loop i =
    if i = length then false
    else if (unsafe_get arr ~dummy ~i ~length) == x then
      true
    else loop (succ i)
  in
  let res = loop 0 in
  check_same_length "memq" a ~length;
  res

let find_opt p a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let rec loop i =
    if i = length then None
    else
      let x = unsafe_get arr ~dummy ~i ~length in
      if p x then Some x
      else loop (succ i)
  in
  let res = loop 0 in
  check_same_length "find_opt" a ~length;
  res

let find_index p a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let rec loop i =
    if i = length then None
    else
      let x = unsafe_get arr ~dummy ~i ~length in
      if p x then Some i
      else loop (succ i)
  in
  let res = loop 0 in
  check_same_length "find_index" a ~length;
  res

let find_map p a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let rec loop i =
    if i = length then None
    else
      match p (unsafe_get arr ~dummy ~i ~length) with
      | None -> loop (succ i)
      | Some _ as r -> r
  in
  let res = loop 0 in
  check_same_length "find_map" a ~length;
  res

let find_mapi p a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let rec loop i =
    if i = length then None
    else
      match p i (unsafe_get arr ~dummy ~i ~length) with
      | None -> loop (succ i)
      | Some _ as r -> r
  in
  let res = loop 0 in
  check_same_length "find_mapi" a ~length;
  res

let equal eq a1 a2 =
  let Pack {arr = arr1; length = length; dummy = dum1} = a1 in
  let Pack {arr = arr2; length = len2; dummy = dum2} = a2 in
  if length <> len2 then false
  else begin
    check_valid_length length arr1;
    check_valid_length length arr2;
    let rec loop i =
      if i = length then true
      else
        eq
          (unsafe_get arr1 ~dummy:dum1 ~i ~length)
          (unsafe_get arr2 ~dummy:dum2 ~i ~length)
        && loop (i + 1)
    in
    let r = loop 0 in
    check_same_length "equal" a1 ~length;
    check_same_length "equal" a2 ~length;
    r
  end

let compare cmp a1 a2 =
  let Pack {arr = arr1; length = length; dummy = dum1} = a1 in
  let Pack {arr = arr2; length = len2; dummy = dum2} = a2 in
  if length <> len2 then length - len2
  else begin
    check_valid_length length arr1;
    check_valid_length length arr2;
    let rec loop i =
      if i = length then 0
      else
        let c =
          cmp
            (unsafe_get arr1 ~dummy:dum1 ~i ~length)
            (unsafe_get arr2 ~dummy:dum2 ~i ~length)
        in
        if c <> 0 then c
        else loop (i + 1)
    in
    let r = loop 0 in
    check_same_length "compare" a1 ~length;
    check_same_length "compare" a2 ~length;
    r
  end

(** {1:conversions Conversions to other data structures} *)

(* The eager [to_*] conversion functions behave similarly to iterators
   in presence of updates during computation. The [*_reentrant]
   functions obey their more permissive specification, which tolerates
   any concurrent update. *)

let of_array a =
  let length = Array.length a in
  let Dummy.Fresh dummy = global_dummy in
  let arr = Dummy.Array.copy a ~dummy in
  Pack {
    length;
    arr;
    dummy;
  }

let to_array a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let res = Array.init length (fun i ->
    unsafe_get arr ~dummy ~i ~length
  ) in
  check_same_length "to_array" a ~length;
  res

let of_list li =
  let a = Array.of_list li in
  let length = Array.length a in
  let Dummy.Fresh dummy = global_dummy in
  let arr = Dummy.Array.unsafe_nocopy a ~dummy in
  Pack {
    length;
    arr;
    dummy;
  }

let to_list a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let l = ref [] in
  for i = length - 1 downto 0 do
    l := unsafe_get arr ~dummy ~i ~length :: !l
  done;
  check_same_length "to_list" a ~length;
  !l

let of_seq seq =
  let init = create() in
  append_seq init seq;
  init

let to_seq a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let rec aux i = fun () ->
    check_same_length "to_seq" a ~length;
    if i >= length then Seq.Nil
    else begin
      let v = unsafe_get arr ~dummy ~i ~length in
      Seq.Cons (v, aux (i + 1))
    end
  in
  aux 0

let to_seq_reentrant a =
  let rec aux i = fun () ->
    if i >= length a then Seq.Nil
    else begin
      let v = get a i in
      Seq.Cons (v, aux (i + 1))
    end
  in
  aux 0

let to_seq_rev a =
  let Pack {arr; length; dummy} = a in
  check_valid_length length arr;
  let rec aux i = fun () ->
    check_same_length "to_seq_rev" a ~length;
    if i < 0 then Seq.Nil
    else begin
      let v = unsafe_get arr ~dummy ~i ~length in
      Seq.Cons (v, aux (i - 1))
    end
  in
  aux (length - 1)

let to_seq_rev_reentrant a =
  let rec aux i = fun () ->
    if i < 0 then Seq.Nil
    else if i >= length a then
      (* If some elements have been removed in the meantime, we skip
         those elements and continue with the new end of the array. *)
      aux (length a - 1) ()
    else begin
      let v = get a i in
      Seq.Cons (v, aux (i - 1))
    end
  in
  aux (length a - 1)
OCaml

Innovation. Community. Security.