package ocaml-base-compiler
Official release 5.2.1
Install
Dune Dependency
Authors
Maintainers
Sources
ocaml-5.2.1.tar.gz
sha256=2d0f8090951a97a2c0e5b8a11e90096c0e1791d2e471e4a67f87e3b974044cd0
doc/src/stdlib/ephemeron.ml.html
Source file ephemeron.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740
(**************************************************************************) (* *) (* OCaml *) (* *) (* Damien Doligez, projet Para, INRIA Rocquencourt *) (* *) (* Copyright 1997 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) module type SeededS = sig type key type !'a t val create : ?random (*thwart tools/sync_stdlib_docs*) : bool -> int -> 'a t val clear : 'a t -> unit val reset : 'a t -> unit val copy : 'a t -> 'a t val add : 'a t -> key -> 'a -> unit val remove : 'a t -> key -> unit val find : 'a t -> key -> 'a val find_opt : 'a t -> key -> 'a option val find_all : 'a t -> key -> 'a list val replace : 'a t -> key -> 'a -> unit val mem : 'a t -> key -> bool val length : 'a t -> int val stats : 'a t -> Hashtbl.statistics val add_seq : 'a t -> (key * 'a) Seq.t -> unit val replace_seq : 'a t -> (key * 'a) Seq.t -> unit val of_seq : (key * 'a) Seq.t -> 'a t val clean: 'a t -> unit val stats_alive: 'a t -> Hashtbl.statistics (** same as {!stats} but only count the alive bindings *) end module type S = sig type key type !'a t val create : int -> 'a t val clear : 'a t -> unit val reset : 'a t -> unit val copy : 'a t -> 'a t val add : 'a t -> key -> 'a -> unit val remove : 'a t -> key -> unit val find : 'a t -> key -> 'a val find_opt : 'a t -> key -> 'a option val find_all : 'a t -> key -> 'a list val replace : 'a t -> key -> 'a -> unit val mem : 'a t -> key -> bool val length : 'a t -> int val stats : 'a t -> Hashtbl.statistics val add_seq : 'a t -> (key * 'a) Seq.t -> unit val replace_seq : 'a t -> (key * 'a) Seq.t -> unit val of_seq : (key * 'a) Seq.t -> 'a t val clean: 'a t -> unit val stats_alive: 'a t -> Hashtbl.statistics (** same as {!stats} but only count the alive bindings *) end module GenHashTable = struct type equal = | ETrue | EFalse | EDead (** the garbage collector reclaimed the data *) module MakeSeeded(H: sig type t type 'a container val create: t -> 'a -> 'a container val seeded_hash: int -> t -> int val equal: 'a container -> t -> equal val get_data: 'a container -> 'a option val set_key_data: 'a container -> t -> 'a -> unit val check_key: 'a container -> bool end) : SeededS with type key = H.t = struct type 'a t = { mutable size: int; (* number of entries *) mutable data: 'a bucketlist array; (* the buckets *) seed: int; (* for randomization *) initial_size: int; (* initial array size *) } and 'a bucketlist = | Empty | Cons of int (* hash of the key *) * 'a H.container * 'a bucketlist (** the hash of the key is kept in order to test the equality of the hash before the key. Same reason as for Weak.Make *) type key = H.t let rec power_2_above x n = if x >= n then x else if x * 2 > Sys.max_array_length then x else power_2_above (x * 2) n let prng = lazy (Random.State.make_self_init()) let create ?(random = (Hashtbl.is_randomized ())) initial_size = let s = power_2_above 16 initial_size in let seed = if random then Random.State.bits (Lazy.force prng) else 0 in { initial_size = s; size = 0; seed = seed; data = Array.make s Empty } let clear h = h.size <- 0; let len = Array.length h.data in for i = 0 to len - 1 do h.data.(i) <- Empty done let reset h = let len = Array.length h.data in if len = h.initial_size then clear h else begin h.size <- 0; h.data <- Array.make h.initial_size Empty end let copy h = { h with data = Array.copy h.data } let key_index h hkey = hkey land (Array.length h.data - 1) let clean h = let rec do_bucket = function | Empty -> Empty | Cons(_, c, rest) when not (H.check_key c) -> h.size <- h.size - 1; do_bucket rest | Cons(hkey, c, rest) -> Cons(hkey, c, do_bucket rest) in let d = h.data in for i = 0 to Array.length d - 1 do d.(i) <- do_bucket d.(i) done (** resize is the only function to do the actual cleaning of dead keys (remove does it just because it could). The goal is to: - not resize infinitely when the actual number of alive keys is bounded but keys are continuously added. That would happen if this function always resize. - not call this function after each addition, that would happen if this function don't resize even when only one key is dead. So the algorithm: - clean the keys before resizing - if the number of remaining keys is less than half the size of the array, don't resize. - if it is more, resize. The second problem remains if the table reaches {!Sys.max_array_length}. *) let resize h = let odata = h.data in let osize = Array.length odata in let nsize = osize * 2 in clean h; if nsize < Sys.max_array_length && h.size >= osize lsr 1 then begin let ndata = Array.make nsize Empty in h.data <- ndata; (* so that key_index sees the new bucket count *) let rec insert_bucket = function Empty -> () | Cons(hkey, data, rest) -> insert_bucket rest; (* preserve original order of elements *) let nidx = key_index h hkey in ndata.(nidx) <- Cons(hkey, data, ndata.(nidx)) in for i = 0 to osize - 1 do insert_bucket odata.(i) done end let add h key info = let hkey = H.seeded_hash h.seed key in let i = key_index h hkey in let container = H.create key info in let bucket = Cons(hkey, container, h.data.(i)) in h.data.(i) <- bucket; h.size <- h.size + 1; if h.size > Array.length h.data lsl 1 then resize h let remove h key = let hkey = H.seeded_hash h.seed key in let rec remove_bucket = function | Empty -> Empty | Cons(hk, c, next) when hkey = hk -> begin match H.equal c key with | ETrue -> h.size <- h.size - 1; next | EFalse -> Cons(hk, c, remove_bucket next) | EDead -> (* The dead key is automatically removed. It is acceptable for this function since it already removes a binding *) h.size <- h.size - 1; remove_bucket next end | Cons(hk,c,next) -> Cons(hk, c, remove_bucket next) in let i = key_index h hkey in h.data.(i) <- remove_bucket h.data.(i) (** {!find} don't remove dead keys because it would be surprising for the user that a read-only function mutates the state (eg. concurrent access). Same for {!mem}. *) let rec find_rec key hkey = function | Empty -> raise Not_found | Cons(hk, c, rest) when hkey = hk -> begin match H.equal c key with | ETrue -> begin match H.get_data c with | None -> (* This case is not impossible because the gc can run between H.equal and H.get_data *) find_rec key hkey rest | Some d -> d end | EFalse -> find_rec key hkey rest | EDead -> find_rec key hkey rest end | Cons(_, _, rest) -> find_rec key hkey rest let find h key = let hkey = H.seeded_hash h.seed key in (* TODO inline 3 iterations *) find_rec key hkey (h.data.(key_index h hkey)) let rec find_rec_opt key hkey = function | Empty -> None | Cons(hk, c, rest) when hkey = hk -> begin match H.equal c key with | ETrue -> begin match H.get_data c with | None -> (* This case is not impossible because the gc can run between H.equal and H.get_data *) find_rec_opt key hkey rest | Some _ as d -> d end | EFalse -> find_rec_opt key hkey rest | EDead -> find_rec_opt key hkey rest end | Cons(_, _, rest) -> find_rec_opt key hkey rest let find_opt h key = let hkey = H.seeded_hash h.seed key in (* TODO inline 3 iterations *) find_rec_opt key hkey (h.data.(key_index h hkey)) let find_all h key = let hkey = H.seeded_hash h.seed key in let rec find_in_bucket = function | Empty -> [] | Cons(hk, c, rest) when hkey = hk -> begin match H.equal c key with | ETrue -> begin match H.get_data c with | None -> find_in_bucket rest | Some d -> d::find_in_bucket rest end | EFalse -> find_in_bucket rest | EDead -> find_in_bucket rest end | Cons(_, _, rest) -> find_in_bucket rest in find_in_bucket h.data.(key_index h hkey) let replace h key info = let hkey = H.seeded_hash h.seed key in let rec replace_bucket = function | Empty -> raise Not_found | Cons(hk, c, next) when hkey = hk -> begin match H.equal c key with | ETrue -> H.set_key_data c key info | EFalse | EDead -> replace_bucket next end | Cons(_,_,next) -> replace_bucket next in let i = key_index h hkey in let l = h.data.(i) in try replace_bucket l with Not_found -> let container = H.create key info in h.data.(i) <- Cons(hkey, container, l); h.size <- h.size + 1; if h.size > Array.length h.data lsl 1 then resize h let mem h key = let hkey = H.seeded_hash h.seed key in let rec mem_in_bucket = function | Empty -> false | Cons(hk, c, rest) when hk = hkey -> begin match H.equal c key with | ETrue -> true | EFalse | EDead -> mem_in_bucket rest end | Cons(_hk, _c, rest) -> mem_in_bucket rest in mem_in_bucket h.data.(key_index h hkey) let length h = h.size let rec bucket_length accu = function | Empty -> accu | Cons(_, _, rest) -> bucket_length (accu + 1) rest let stats h = let mbl = Array.fold_left (fun m b -> Int.max m (bucket_length 0 b)) 0 h.data in let histo = Array.make (mbl + 1) 0 in Array.iter (fun b -> let l = bucket_length 0 b in histo.(l) <- histo.(l) + 1) h.data; { Hashtbl.num_bindings = h.size; num_buckets = Array.length h.data; max_bucket_length = mbl; bucket_histogram = histo } let rec bucket_length_alive accu = function | Empty -> accu | Cons(_, c, rest) when H.check_key c -> bucket_length_alive (accu + 1) rest | Cons(_, _, rest) -> bucket_length_alive accu rest let stats_alive h = let size = ref 0 in let mbl = Array.fold_left (fun m b -> Int.max m (bucket_length_alive 0 b)) 0 h.data in let histo = Array.make (mbl + 1) 0 in Array.iter (fun b -> let l = bucket_length_alive 0 b in size := !size + l; histo.(l) <- histo.(l) + 1) h.data; { Hashtbl.num_bindings = !size; num_buckets = Array.length h.data; max_bucket_length = mbl; bucket_histogram = histo } let add_seq tbl i = Seq.iter (fun (k,v) -> add tbl k v) i let replace_seq tbl i = Seq.iter (fun (k,v) -> replace tbl k v) i let of_seq i = let tbl = create 16 in replace_seq tbl i; tbl end end module ObjEph = Obj.Ephemeron let _obj_opt : Obj.t option -> 'a option = fun x -> match x with | None -> x | Some v -> Some (Obj.obj v) (** The previous function is typed so this one is also correct *) let obj_opt : Obj.t option -> 'a option = fun x -> Obj.magic x module K1 = struct type ('k,'d) t = ObjEph.t let create () : ('k,'d) t = ObjEph.create 1 let get_key (t:('k,'d) t) : 'k option = obj_opt (ObjEph.get_key t 0) let set_key (t:('k,'d) t) (k:'k) : unit = ObjEph.set_key t 0 (Obj.repr k) let check_key (t:('k,'d) t) : bool = ObjEph.check_key t 0 let get_data (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data t) let set_data (t:('k,'d) t) (d:'d) : unit = ObjEph.set_data t (Obj.repr d) let unset_data (t:('k,'d) t) : unit = ObjEph.unset_data t let make key data = let eph = create () in set_data eph data; set_key eph key; eph let query eph key = match get_key eph with | None -> None | Some k when k == key -> get_data eph | Some _ -> None module MakeSeeded (H:Hashtbl.SeededHashedType) = GenHashTable.MakeSeeded(struct type 'a container = (H.t,'a) t type t = H.t let create k d = let c = create () in set_data c d; set_key c k; c let seeded_hash = H.seeded_hash let equal c k = (* {!get_key_copy} is not used because the equality of the user can be the physical equality *) match get_key c with | None -> GenHashTable.EDead | Some k' -> if H.equal k k' then GenHashTable.ETrue else GenHashTable.EFalse let get_data = get_data let set_key_data c k d = unset_data c; set_key c k; set_data c d let check_key = check_key end) module Make(H: Hashtbl.HashedType): (S with type key = H.t) = struct include MakeSeeded(struct type t = H.t let equal = H.equal let seeded_hash (_seed: int) x = H.hash x end) let create sz = create ~random:false sz let of_seq i = let tbl = create 16 in replace_seq tbl i; tbl end module Bucket = struct type nonrec ('k, 'd) t = ('k, 'd) t list ref let k1_make = make let make () = ref [] let add b k d = b := k1_make k d :: !b let test_key k e = match get_key e with | Some x when x == k -> true | _ -> false let remove b k = let rec loop l acc = match l with | [] -> () | h :: t when test_key k h -> b := List.rev_append acc t | h :: t -> loop t (h :: acc) in loop !b [] let find b k = match List.find_opt (test_key k) !b with | Some e -> get_data e | None -> None let length b = List.length !b let clear b = b := [] end end module K2 = struct type ('k1, 'k2, 'd) t = ObjEph.t let create () : ('k1,'k2,'d) t = ObjEph.create 2 let get_key1 (t:('k1,'k2,'d) t) : 'k1 option = obj_opt (ObjEph.get_key t 0) let set_key1 (t:('k1,'k2,'d) t) (k:'k1) : unit = ObjEph.set_key t 0 (Obj.repr k) let check_key1 (t:('k1,'k2,'d) t) : bool = ObjEph.check_key t 0 let get_key2 (t:('k1,'k2,'d) t) : 'k2 option = obj_opt (ObjEph.get_key t 1) let set_key2 (t:('k1,'k2,'d) t) (k:'k2) : unit = ObjEph.set_key t 1 (Obj.repr k) let check_key2 (t:('k1,'k2,'d) t) : bool = ObjEph.check_key t 1 let get_data (t:('k1,'k2,'d) t) : 'd option = obj_opt (ObjEph.get_data t) let set_data (t:('k1,'k2,'d) t) (d:'d) : unit = ObjEph.set_data t (Obj.repr d) let unset_data (t:('k1,'k2,'d) t) : unit = ObjEph.unset_data t let make key1 key2 data = let eph = create () in set_data eph data; set_key1 eph key1; set_key2 eph key2; ignore (Sys.opaque_identity key1); eph let query eph key1 key2 = match get_key1 eph with | None -> None | Some k when k == key1 -> begin match get_key2 eph with | None -> None | Some k when k == key2 -> get_data eph | Some _ -> None end | Some _ -> None module MakeSeeded (H1:Hashtbl.SeededHashedType) (H2:Hashtbl.SeededHashedType) = GenHashTable.MakeSeeded(struct type 'a container = (H1.t,H2.t,'a) t type t = H1.t * H2.t let create (k1,k2) d = let c = create () in set_data c d; set_key1 c k1; set_key2 c k2; c let seeded_hash seed (k1,k2) = H1.seeded_hash seed k1 + H2.seeded_hash seed k2 * 65599 let equal c (k1,k2) = match get_key1 c, get_key2 c with | None, _ | _ , None -> GenHashTable.EDead | Some k1', Some k2' -> if H1.equal k1 k1' && H2.equal k2 k2' then GenHashTable.ETrue else GenHashTable.EFalse let get_data = get_data let set_key_data c (k1,k2) d = unset_data c; set_key1 c k1; set_key2 c k2; set_data c d let check_key c = check_key1 c && check_key2 c end) module Make(H1: Hashtbl.HashedType)(H2: Hashtbl.HashedType): (S with type key = H1.t * H2.t) = struct include MakeSeeded (struct type t = H1.t let equal = H1.equal let seeded_hash (_seed: int) x = H1.hash x end) (struct type t = H2.t let equal = H2.equal let seeded_hash (_seed: int) x = H2.hash x end) let create sz = create ~random:false sz let of_seq i = let tbl = create 16 in replace_seq tbl i; tbl end module Bucket = struct type nonrec ('k1, 'k2, 'd) t = ('k1, 'k2, 'd) t list ref let k2_make = make let make () = ref [] let add b k1 k2 d = b := k2_make k1 k2 d :: !b let test_keys k1 k2 e = match get_key1 e, get_key2 e with | Some x1, Some x2 when x1 == k1 && x2 == k2 -> true | _ -> false let remove b k1 k2 = let rec loop l acc = match l with | [] -> () | h :: t when test_keys k1 k2 h -> b := List.rev_append acc t | h :: t -> loop t (h :: acc) in loop !b [] let find b k1 k2 = match List.find_opt (test_keys k1 k2) !b with | Some e -> get_data e | None -> None let length b = List.length !b let clear b = b := [] end end module Kn = struct type ('k,'d) t = ObjEph.t let create n : ('k,'d) t = ObjEph.create n let length (k:('k,'d) t) : int = ObjEph.length k let get_key (t:('k,'d) t) (n:int) : 'k option = obj_opt (ObjEph.get_key t n) let set_key (t:('k,'d) t) (n:int) (k:'k) : unit = ObjEph.set_key t n (Obj.repr k) let check_key (t:('k,'d) t) (n:int) : bool = ObjEph.check_key t n let get_data (t:('k,'d) t) : 'd option = obj_opt (ObjEph.get_data t) let set_data (t:('k,'d) t) (d:'d) : unit = ObjEph.set_data t (Obj.repr d) let unset_data (t:('k,'d) t) : unit = ObjEph.unset_data t let make keys data = let l = Array.length keys in let eph = create l in set_data eph data; for i = 0 to l - 1 do set_key eph i keys.(i) done; eph let query eph keys = let l = length eph in try if l <> Array.length keys then raise Exit; for i = 0 to l - 1 do match get_key eph i with | None -> raise Exit | Some k when k == keys.(i) -> () | Some _ -> raise Exit done; get_data eph with Exit -> None module MakeSeeded (H:Hashtbl.SeededHashedType) = GenHashTable.MakeSeeded(struct type 'a container = (H.t,'a) t type t = H.t array let create k d = let c = create (Array.length k) in set_data c d; for i=0 to Array.length k -1 do set_key c i k.(i); done; c let seeded_hash seed k = let h = ref 0 in for i=0 to Array.length k -1 do h := H.seeded_hash seed k.(i) * 65599 + !h; done; !h let equal c k = let len = Array.length k in let len' = length c in if len != len' then GenHashTable.EFalse else let rec equal_array k c i = if i < 0 then GenHashTable.ETrue else match get_key c i with | None -> GenHashTable.EDead | Some ki -> if H.equal k.(i) ki then equal_array k c (i-1) else GenHashTable.EFalse in equal_array k c (len-1) let get_data = get_data let set_key_data c k d = unset_data c; for i=0 to Array.length k -1 do set_key c i k.(i); done; set_data c d let check_key c = let rec check c i = i < 0 || (check_key c i && check c (i-1)) in check c (length c - 1) end) module Make(H: Hashtbl.HashedType): (S with type key = H.t array) = struct include MakeSeeded(struct type t = H.t let equal = H.equal let seeded_hash (_seed: int) x = H.hash x end) let create sz = create ~random:false sz let of_seq i = let tbl = create 16 in replace_seq tbl i; tbl end module Bucket = struct type nonrec ('k, 'd) t = ('k, 'd) t list ref let kn_make = make let make () = ref [] let add b k d = b := kn_make k d :: !b let test_keys k e = try if length e <> Array.length k then raise Exit; for i = 0 to Array.length k - 1 do match get_key e i with | Some x when x == k.(i) -> () | _ -> raise Exit done; true with Exit -> false let remove b k = let rec loop l acc = match l with | [] -> () | h :: t when test_keys k h -> b := List.rev_append acc t | h :: t -> loop t (h :: acc) in loop !b [] let find b k = match List.find_opt (test_keys k) !b with | Some e -> get_data e | None -> None let length b = List.length !b let clear b = b := [] end end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>