package ocaml-base-compiler
Official release 5.2.1
Install
Dune Dependency
Authors
Maintainers
Sources
ocaml-5.2.1.tar.gz
sha256=2d0f8090951a97a2c0e5b8a11e90096c0e1791d2e471e4a67f87e3b974044cd0
doc/src/stdlib/random.ml.html
Source file random.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374
(**************************************************************************) (* *) (* OCaml *) (* *) (* Damien Doligez, projet Para, INRIA Rocquencourt *) (* Xavier Leroy, projet Cambium, College de France and Inria *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Pseudo-random number generator *) external random_seed: unit -> int array = "caml_sys_random_seed" module State = struct open Bigarray type t = (int64, int64_elt, c_layout) Array1.t external next: t -> (int64[@unboxed]) = "caml_lxm_next" "caml_lxm_next_unboxed" [@@noalloc] let create () : t = Array1.create Int64 C_layout 4 let set s i1 i2 i3 i4 = Array1.unsafe_set s 0 (Int64.logor i1 1L); (* must be odd *) Array1.unsafe_set s 1 i2; Array1.unsafe_set s 2 (if i3 <> 0L then i3 else 1L); (* must not be 0 *) Array1.unsafe_set s 3 (if i4 <> 0L then i4 else 2L) (* must not be 0 *) let mk i1 i2 i3 i4 = let s = create () in set s i1 i2 i3 i4; s let serialization_prefix = "lxm1:" (* "lxm" denotes the algorithm currently in use, and '1' is a version number. We should update this prefix if we change the Random algorithm or the serialization format, so that users get a clean error instead of believing that they faithfully reproduce their previous state and in fact get a different stream. Note that there is no constraint to keep the same "<name><ver>:<data>" format or message size in future versions, we could change the format completely if we wanted as long as there is no confusion possible with the previous formats. *) let serialization_prefix_len = String.length serialization_prefix let to_binary_string s = let prefix = serialization_prefix in let preflen = serialization_prefix_len in let buf = Bytes.create (preflen + 4 * 8) in Bytes.blit_string prefix 0 buf 0 preflen; for i = 0 to 3 do Bytes.set_int64_le buf (preflen + i * 8) (Array1.get s i) done; Bytes.unsafe_to_string buf let of_binary_string buf = let prefix = serialization_prefix in let preflen = serialization_prefix_len in if String.length buf <> preflen + 4 * 8 || not (String.starts_with ~prefix buf) then failwith ("Random.State.of_binary_string: expected a format \ compatible with OCaml " ^ Sys.ocaml_version); let i1 = String.get_int64_le buf (preflen + 0 * 8) in let i2 = String.get_int64_le buf (preflen + 1 * 8) in let i3 = String.get_int64_le buf (preflen + 2 * 8) in let i4 = String.get_int64_le buf (preflen + 3 * 8) in mk i1 i2 i3 i4 let assign (dst: t) (src: t) = Array1.blit src dst let copy s = let s' = create() in assign s' s; s' (* The seed is an array of integers. It can be just one integer, but it can also be 12 or more bytes. To hide the difference, we serialize the array as a sequence of bytes, then hash the sequence with MD5 (Digest.bytes). MD5 gives only 128 bits while we need 256 bits, so we hash twice with different suffixes. *) let reinit s seed = let n = Array.length seed in let b = Bytes.create (n * 8 + 1) in for i = 0 to n-1 do Bytes.set_int64_le b (i * 8) (Int64.of_int seed.(i)) done; Bytes.set b (n * 8) '\x01'; let d1 = Digest.bytes b in Bytes.set b (n * 8) '\x02'; let d2 = Digest.bytes b in set s (String.get_int64_le d1 0) (String.get_int64_le d1 8) (String.get_int64_le d2 0) (String.get_int64_le d2 8) let make seed = let s = create() in reinit s seed; s let make_self_init () = make (random_seed ()) let min_int31 = -0x4000_0000 (* = -2{^30}, which is [min_int] for 31-bit integers *) let max_int31 = 0x3FFF_FFFF (* = 2{^30}-1, which is [max_int] for 31-bit integers *) (* avoid integer literals for these, 32-bit OCaml would reject them: *) let min_int32 = -(1 lsl 31) (* = -0x8000_0000 on platforms where [Sys.int_size >= 32] *) let max_int32 = (1 lsl 31) - 1 (* = 0x7FFF_FFFF on platforms where [Sys.int_size >= 32] *) (* Return 30 random bits as an integer 0 <= x < 2^30 *) let bits s = Int64.to_int (next s) land max_int31 (* Return an integer between 0 (included) and [n] (excluded). [bound] may be any positive [int]. [mask] must be of the form [2{^i}-1] and greater or equal to [n]. Larger values of [mask] make the function run faster (fewer samples are rejected). Smaller values of [mask] are usable on a wider range of OCaml implementations. *) let rec int_aux s n mask = (* We start by drawing a non-negative integer in the [ [0, mask] ] range *) let r = Int64.to_int (next s) land mask in let v = r mod n in (* For uniform distribution of the result between 0 included and [n] * excluded, the random number [r] must have been drawn uniformly in * an interval whose length is a multiple of [n]. To achieve this, * we use rejection sampling on the greatest interval [ [0, k*n-1] ] * that fits in [ [0, mask] ]. That is, we reject the * sample if it falls outside of this interval, and draw again. * This is what the test below does, while carefuly avoiding * overflows and sparing a division [mask / n]. *) if r - v > mask - n + 1 then int_aux s n mask else v (* Return an integer between 0 (included) and [bound] (excluded). The bound must fit in 31-bit signed integers. This function yields the same output regardless of the integer size. *) let int s bound = if bound > max_int31 || bound <= 0 then invalid_arg "Random.int" else int_aux s bound max_int31 (* Return an integer between 0 (included) and [bound] (excluded). [bound] may be any positive [int]. *) let full_int s bound = if bound <= 0 then invalid_arg "Random.full_int" (* When the bound fits in 31-bit signed integers, we use the same mask as in function [int] so as to yield the same output on all platforms supported by OCaml (32-bit OCaml, 64-bit OCaml, and JavaScript). When the bound fits in 32-bit signed integers, we use [max_int32] as the mask so as to yield the same output on all platforms where [Sys.int_size >= 32] (i.e. JavaScript and 64-bit OCaml). *) else int_aux s bound (if bound <= max_int31 then max_int31 else if bound <= max_int32 then max_int32 else max_int) (* Return an integer between [min] (included) and [max] (included). The [nbits] parameter is the size in bits of the signed integers we draw from [s]. We must have [-2{^nbits - 1} <= min <= max < 2{^nbits - 1}]. Moreover, for the iteration to converge quickly, the interval [[min, max]] should have width at least [2{^nbits - 1}]. As the width approaches this lower limit, the average number of draws approaches 2, with a quite high standard deviation (2 + epsilon). *) let rec int_in_large_range s ~min ~max ~nbits = let drop = Sys.int_size - nbits in (* The bitshifts replicate the [nbits]-th bit (sign bit) to higher bits: *) let r = ((Int64.to_int (next s)) lsl drop) asr drop in if r < min || r > max then int_in_large_range s ~min ~max ~nbits else r (* Return an integer between [min] (included) and [max] (included). [mask] is as described for [int_aux]. [nbits] is as described for [int_in_large_range]. *) let int_in_range_aux s ~min ~max ~mask ~nbits = let span = max - min + 1 in if span <= mask (* [span] is small enough *) && span > 0 (* no overflow occurred when computing [span] *) then (* Just draw a number in [[0, span)] and shift it by [min]. *) min + int_aux s span mask else (* Span too large, use the alternative drawing method. *) int_in_large_range s ~min ~max ~nbits (* Return an integer between [min] (included) and [max] (included). We must have [min <= max]. *) let int_in_range s ~min ~max = if min > max then invalid_arg "Random.int_in_range"; (* When both bounds fit in 31-bit signed integers, we use parameters [mask] and [nbits] appropriate for 31-bit integers, so as to yield the same output on all platforms supported by OCaml. When both bounds fit in 32-bit signed integers, we use parameters [mask] and [nbits] appropriate for 32-bit integers, so as to yield the same output on JavaScript and on 64-bit OCaml. *) if min >= min_int31 && max <= max_int31 then int_in_range_aux s ~min ~max ~mask:max_int31 ~nbits:31 else if min >= min_int32 && max <= max_int32 then int_in_range_aux s ~min ~max ~mask:max_int32 ~nbits:32 else int_in_range_aux s ~min ~max ~mask:max_int ~nbits:Sys.int_size (* Return 32 random bits as an [int32] *) let bits32 s = Int64.to_int32 (next s) (* Return an [int32] between 0 (included) and [bound] (excluded). *) let rec int32aux s n = let r = Int32.shift_right_logical (bits32 s) 1 in let v = Int32.rem r n in (* Explanation of this test: see comment in [int_aux]. *) if Int32.(sub r v > add (sub max_int n) 1l) then int32aux s n else v let int32 s bound = if bound <= 0l then invalid_arg "Random.int32" else int32aux s bound (* Return an [int32] between [min] (included) and [max] (included). We must have [min <= max]. *) let rec int32_in_range_aux s ~min ~max = let r = Int64.to_int32 (next s) in if r < min || r > max then int32_in_range_aux s ~min ~max else r let int32_in_range s ~min ~max = if min > max then invalid_arg "Random.int32_in_range" else let span = Int32.succ (Int32.sub max min) in (* Explanation of this test: see comment in [int_in_range_aux]. *) if span <= Int32.zero then int32_in_range_aux s ~min ~max else Int32.add min (int32aux s span) (* Return 64 random bits as an [int64] *) let bits64 s = next s (* Return an [int64] between 0 (included) and [bound] (excluded). *) let rec int64aux s n = let r = Int64.shift_right_logical (bits64 s) 1 in let v = Int64.rem r n in (* Explanation of this test: see comment in [int_aux]. *) if Int64.(sub r v > add (sub max_int n) 1L) then int64aux s n else v let int64 s bound = if bound <= 0L then invalid_arg "Random.int64" else int64aux s bound (* Return an [int64] between [min] (included) and [max] (included). We must have [min <= max]. *) let rec int64_in_range_aux s ~min ~max = let r = next s in if r < min || r > max then int64_in_range_aux s ~min ~max else r let int64_in_range s ~min ~max = if min > max then invalid_arg "Random.int64_in_range" else let span = Int64.succ (Int64.sub max min) in (* Explanation of this test: see comment in [int_in_range_aux]. *) if span <= Int64.zero then int64_in_range_aux s ~min ~max else Int64.add min (int64aux s span) (* Return 32 or 64 random bits as a [nativeint] *) let nativebits = if Nativeint.size = 32 then fun s -> Nativeint.of_int32 (bits32 s) else fun s -> Int64.to_nativeint (bits64 s) (* Return a [nativeint] between 0 (included) and [bound] (excluded). *) let nativeint = if Nativeint.size = 32 then fun s bound -> Nativeint.of_int32 (int32 s (Nativeint.to_int32 bound)) else fun s bound -> Int64.to_nativeint (int64 s (Int64.of_nativeint bound)) (* Return a [nativeint] between [min] (included) and [max] (included). *) let nativeint_in_range = if Nativeint.size = 32 then fun s ~min ~max -> Nativeint.of_int32 (int32_in_range s ~min:(Nativeint.to_int32 min) ~max:(Nativeint.to_int32 max)) else fun s ~min ~max -> Int64.to_nativeint (int64_in_range s ~min:(Int64.of_nativeint min) ~max:(Int64.of_nativeint max)) (* Return a float 0 < x < 1 uniformly distributed among the multiples of 2^-53 *) let rec rawfloat s = let b = next s in let n = Int64.shift_right_logical b 11 in if n <> 0L then Int64.to_float n *. 0x1.p-53 else rawfloat s (* Return a float between 0 and [bound] *) let float s bound = rawfloat s *. bound (* Return a random Boolean *) let bool s = next s < 0L (* Split a new PRNG off the given PRNG *) let split s = let i1 = bits64 s in let i2 = bits64 s in let i3 = bits64 s in let i4 = bits64 s in mk i1 i2 i3 i4 end let mk_default () = (* This is the state obtained with [State.make [| 314159265 |]]. *) State.mk (-6196874289567705097L) 586573249833713189L (-8591268803865043407L) 6388613595849772044L let random_key = Domain.DLS.new_key ~split_from_parent:State.split mk_default let bits () = State.bits (Domain.DLS.get random_key) let int bound = State.int (Domain.DLS.get random_key) bound let full_int bound = State.full_int (Domain.DLS.get random_key) bound let int_in_range ~min ~max = State.int_in_range (Domain.DLS.get random_key) ~min ~max let int32 bound = State.int32 (Domain.DLS.get random_key) bound let int32_in_range ~min ~max = State.int32_in_range (Domain.DLS.get random_key) ~min ~max let nativeint bound = State.nativeint (Domain.DLS.get random_key) bound let nativeint_in_range ~min ~max = State.nativeint_in_range (Domain.DLS.get random_key) ~min ~max let int64 bound = State.int64 (Domain.DLS.get random_key) bound let int64_in_range ~min ~max = State.int64_in_range (Domain.DLS.get random_key) ~min ~max let float scale = State.float (Domain.DLS.get random_key) scale let bool () = State.bool (Domain.DLS.get random_key) let bits32 () = State.bits32 (Domain.DLS.get random_key) let bits64 () = State.bits64 (Domain.DLS.get random_key) let nativebits () = State.nativebits (Domain.DLS.get random_key) let full_init seed = State.reinit (Domain.DLS.get random_key) seed let init seed = full_init [| seed |] let self_init () = full_init (random_seed()) (* Splitting *) let split () = State.split (Domain.DLS.get random_key) (* Manipulating the current state. *) let get_state () = State.copy (Domain.DLS.get random_key) let set_state s = State.assign (Domain.DLS.get random_key) s
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>