mSAT: a Modular SAT Solver
(The entry point of this library is the module: Msat
.)
A modular implementation of the SMT algorithm can be found in the Msat.Solver
module, as a functor which takes two modules :
- A representation of formulas (which implements the `Formula_intf.S` signature)
- A theory (which implements the `Theory_intf.S` signature) to check consistence of assertions.
- A dummy empty module to ensure generativity of the solver (solver modules heavily relies on side effects to their internal state)
Sat Solver
A ready-to-use SAT solver is available in the Msat_sat
module using the msat.sat
library (see Msat_sat
). It can be loaded as shown in the following code :
# #require "msat";;
# #require "msat.sat";;
# #print_depth 0;; (* do not print details *)
Then we can create a solver and create some boolean variables:
module Sat = Msat_sat
module E = Sat.Int_lit (* expressions *)
let solver = Sat.create()
(* We create here two distinct atoms *)
let a = E.fresh () (* A 'new_atom' is always distinct from any other atom *)
let b = E.make 1 (* Atoms can be created from integers *)
We can try and check the satisfiability of some clauses — here, the clause a or b
. Sat.assume
adds a list of clauses to the solver. Calling Sat.solve
will check the satisfiability of the current set of clauses, here "Sat".
# a <> b;;
- : bool = true
# Sat.assume solver [[a; b]] ();;
- : unit = ()
# let res = Sat.solve solver;;
val res : Sat.res = Sat.Sat ...
The Sat solver has an incremental mutable state, so we still have the clause `a or b` in our assumptions. We add `not a` and `not b` to the state, and get "Unsat".
# Sat.assume solver [[E.neg a]; [E.neg b]] () ;;
- : unit = ()
# let res = Sat.solve solver ;;
val res : Sat.res = Sat.Unsat ...
Writing clauses by hand can be tedious and error-prone. The functor Msat_tseitin.Make
in the library msat.tseitin
(see Msat_tseitin
). proposes a formula AST (parametrized by atoms) and a function to convert these formulas into clauses:
# #require "msat.tseitin";;
(* Module initialization *)
module F = Msat_tseitin.Make(E)
let solver = Sat.create ()
(* We create here two distinct atoms *)
let a = E.fresh () (* A fresh atom is always distinct from any other atom *)
let b = E.make 1 (* Atoms can be created from integers *)
(* Let's create some formulas *)
let p = F.make_atom a
let q = F.make_atom b
let r = F.make_and [p; q]
let s = F.make_or [F.make_not p; F.make_not q]
We can try and check the satisfiability of the given formulas, by turning it into clauses using `make_cnf`:
# Sat.assume solver (F.make_cnf r) ();;
- : unit = ()
# Sat.solve solver;;
- : Sat.res = Sat.Sat ...
# Sat.assume solver (F.make_cnf s) ();;
- : unit = ()
# Sat.solve solver ;;
- : Sat.res = Sat.Unsat ...
Backtracking utils
The library Msat_backtrack
contains some backtrackable data structures that are useful for implementing theories.
Library msat.backend
This is used for proof backends:
The entry point of this library is the module: Msat_backend
.