Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
mirage_crypto_ec.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
type error = [ | `Invalid_format | `Invalid_length | `Invalid_range | `Not_on_curve | `At_infinity | `Low_order ] let error_to_string = function | `Invalid_format -> "invalid format" | `Not_on_curve -> "point is not on curve" | `At_infinity -> "point is at infinity" | `Invalid_length -> "invalid length" | `Invalid_range -> "invalid range" | `Low_order -> "low order" let pp_error fmt e = Format.fprintf fmt "Cannot parse point: %s" (error_to_string e) exception Message_too_long let bit_at buf i = let byte_num = i / 8 in let bit_num = i mod 8 in let byte = Cstruct.get_uint8 buf byte_num in byte land (1 lsl bit_num) <> 0 module type Dh = sig type secret val secret_of_cs : ?compress:bool -> Cstruct.t -> (secret * Cstruct.t, error) result val gen_key : ?compress:bool -> ?g:Mirage_crypto_rng.g -> unit -> secret * Cstruct.t val key_exchange : secret -> Cstruct.t -> (Cstruct.t, error) result end module type Dsa = sig type priv type pub val priv_of_cstruct : Cstruct.t -> (priv, error) result val priv_to_cstruct : priv -> Cstruct.t val pub_of_cstruct : Cstruct.t -> (pub, error) result val pub_to_cstruct : ?compress:bool -> pub -> Cstruct.t val pub_of_priv : priv -> pub val generate : ?g:Mirage_crypto_rng.g -> unit -> priv * pub val sign : key:priv -> ?k:Cstruct.t -> Cstruct.t -> Cstruct.t * Cstruct.t val verify : key:pub -> Cstruct.t * Cstruct.t -> Cstruct.t -> bool module K_gen (H : Mirage_crypto.Hash.S) : sig val generate : key:priv -> Cstruct.t -> Cstruct.t end end module type Dh_dsa = sig module Dh : Dh module Dsa : Dsa end module type Parameters = sig val a : Cstruct.t val b : Cstruct.t val g_x : Cstruct.t val g_y : Cstruct.t val p : Cstruct.t val n : Cstruct.t val pident: Cstruct.t val byte_length : int val fe_length : int val first_byte_bits : int option end type field_element = Cstruct.buffer type point = { f_x : field_element; f_y : field_element; f_z : field_element } type scalar = Scalar of Cstruct.t module type Foreign = sig val mul : field_element -> field_element -> field_element -> unit val sub : field_element -> field_element -> field_element -> unit val add : field_element -> field_element -> field_element -> unit val to_montgomery : field_element -> unit val from_bytes_buf : field_element -> Cstruct.buffer -> unit val set_one : field_element -> unit val nz : field_element -> bool val sqr : field_element -> field_element -> unit val from_montgomery : field_element -> unit val to_bytes_buf : Cstruct.buffer -> field_element -> unit val inv : field_element -> field_element -> unit val select_c : field_element -> bool -> field_element -> field_element -> unit val double_c : point -> point -> unit val add_c : point -> point -> point -> unit end module type Field_element = sig val create : unit -> field_element val copy : field_element -> field_element -> unit val one : unit -> field_element val to_bytes : Cstruct.t -> field_element -> unit val from_montgomery : field_element -> unit val add : field_element -> field_element -> field_element -> unit val sub : field_element -> field_element -> field_element -> unit val mul : field_element -> field_element -> field_element -> unit val nz : field_element -> bool val sqr : field_element -> field_element -> unit val inv : field_element -> field_element -> unit val from_be_cstruct : Cstruct.t -> field_element val select : bool -> then_:field_element -> else_:field_element -> field_element end module Make_field_element (P : Parameters) (F : Foreign) : Field_element = struct include F let create () = Cstruct.to_bigarray (Cstruct.create P.fe_length) let copy dst src = Bigarray.Array1.blit src dst let checked_buffer cs = assert (Cstruct.length cs = P.byte_length); Cstruct.to_bigarray cs let from_bytes fe cs = F.from_bytes_buf fe (checked_buffer cs) let one () = let fe = create () in F.set_one fe; fe let to_bytes cs fe = F.to_bytes_buf (checked_buffer cs) fe let from_be_cstruct cs = let cs_rev = Cstruct.rev cs in let fe = create () in from_bytes fe cs_rev; F.to_montgomery fe; fe let select bit ~then_ ~else_ = let out = create () in F.select_c out bit then_ else_; out end module type Point = sig val at_infinity : unit -> point val is_infinity : point -> bool val add : point -> point -> point val double : point -> point val of_cstruct : Cstruct.t -> (point, error) result val to_cstruct : compress:bool -> point -> Cstruct.t val to_affine_raw : point -> (field_element * field_element) option val x_of_finite_point : point -> Cstruct.t val params_g : point val select : bool -> then_:point -> else_:point -> point end module Make_point (P : Parameters) (F : Foreign) : Point = struct module Fe = Make_field_element(P)(F) let at_infinity () = let f_x = Fe.one () in let f_y = Fe.one () in let f_z = Fe.create () in { f_x; f_y; f_z } let is_infinity p = not (Fe.nz p.f_z) let is_solution_to_curve_equation = let a = Fe.from_be_cstruct P.a in let b = Fe.from_be_cstruct P.b in fun ~x ~y -> let x3 = Fe.create () in Fe.mul x3 x x; Fe.mul x3 x3 x; let ax = Fe.create () in Fe.mul ax a x; let y2 = Fe.create () in Fe.mul y2 y y; let sum = Fe.create () in Fe.add sum x3 ax; Fe.add sum sum b; Fe.sub sum sum y2; not (Fe.nz sum) let check_coordinate cs = (* ensure cs < p: *) match Eqaf_cstruct.compare_be_with_len ~len:P.byte_length cs P.p >= 0 with | true -> None | exception Invalid_argument _ -> None | false -> Some (Fe.from_be_cstruct cs) (** Convert cstruct coordinates to a finite point ensuring: - x < p - y < p - y^2 = ax^3 + ax + b *) let validate_finite_point ~x ~y = match (check_coordinate x, check_coordinate y) with | Some f_x, Some f_y -> if is_solution_to_curve_equation ~x:f_x ~y:f_y then let f_z = Fe.one () in Ok { f_x; f_y; f_z } else Error `Not_on_curve | _ -> Error `Invalid_range let to_affine_raw p = if is_infinity p then None else let z1 = Fe.create () in let z2 = Fe.create () in Fe.copy z1 p.f_z; Fe.from_montgomery z1; Fe.inv z2 z1; Fe.sqr z1 z2; Fe.from_montgomery z1; let x = Fe.create () in Fe.copy x p.f_x; Fe.mul x x z1; let y = Fe.create () in Fe.copy y p.f_y; Fe.mul z1 z1 z2; Fe.mul y y z1; Some (x, y) let to_affine p = match to_affine_raw p with | None -> None | Some (x, y) -> let out_x = Cstruct.create P.byte_length in let out_y = Cstruct.create P.byte_length in Fe.to_bytes out_x x; Fe.to_bytes out_y y; Some (out_x, out_y) let to_cstruct ~compress p = let buf = match to_affine p with | None -> Cstruct.create 1 | Some (x, y) -> let four = Cstruct.create 1 in Cstruct.set_uint8 four 0 4; let rev_x = Cstruct.rev x and rev_y = Cstruct.rev y in Cstruct.concat [ four; rev_x; rev_y ] in if compress then let out = Cstruct.create (P.byte_length + 1) in let ident = 2 + (Cstruct.get_uint8 buf ((P.byte_length * 2) - 1)) land 1 in Cstruct.blit buf 1 out 1 P.byte_length; Cstruct.set_uint8 out 0 ident; out else buf let double p = let out = { f_x = Fe.create (); f_y = Fe.create (); f_z = Fe.create () } in F.double_c out p; out let add fe_p fe_q = let out = { f_x = Fe.create (); f_y = Fe.create (); f_z = Fe.create () } in F.add_c out fe_p fe_q; out let x_of_finite_point p = match to_affine p with None -> assert false | Some (x, _) -> Cstruct.rev x let params_g = match validate_finite_point ~x:P.g_x ~y:P.g_y with | Ok p -> p | Error _ -> assert false let select bit ~then_ ~else_ = { f_x = Fe.select bit ~then_:then_.f_x ~else_:else_.f_x; f_y = Fe.select bit ~then_:then_.f_y ~else_:else_.f_y; f_z = Fe.select bit ~then_:then_.f_z ~else_:else_.f_z; } let pow = let mult a b = let r = Fe.create () in Fe.mul r a b; r in let sqr x = let r = Fe.create () in Fe.sqr r x; r in fun x exp -> let r0 = ref (Fe.one ()) in let r1 = ref x in for i = P.byte_length * 8 - 1 downto 0 do let bit = bit_at exp i in let multiplied = mult !r0 !r1 in let r0_sqr = sqr !r0 in let r1_sqr = sqr !r1 in r0 := Fe.select bit ~then_:multiplied ~else_:r0_sqr; r1 := Fe.select bit ~then_:r1_sqr ~else_:multiplied; done; !r0 let decompress = (* When p = 4*k+3, as is the case of NIST-P256, there is an efficient square root algorithm to recover the y, as follows: Given the compact representation of Q as x, y2 = x^3 + a*x + b y' = y2^((p+1)/4) y = min(y',p-y') Q=(x,y) is the canonical representation of the point *) let pident = P.pident (* (Params.p + 1) / 4*) in let a = Fe.from_be_cstruct P.a in let b = Fe.from_be_cstruct P.b in let p = Fe.from_be_cstruct P.p in fun pk_cstruct -> let x = Fe.from_be_cstruct (Cstruct.sub pk_cstruct 1 P.byte_length) in let x3 = Fe.create () in let ax = Fe.create () in let sum = Fe.create () in Fe.mul x3 x x; Fe.mul x3 x3 x; (* x3 *) Fe.mul ax a x; (* ax *) Fe.add sum x3 ax; Fe.add sum sum b; (* y^2 *) let y = pow sum pident in (* https://tools.ietf.org/id/draft-jivsov-ecc-compact-00.xml#sqrt point 4.3*) let y' = Fe.create () in Fe.sub y' p y; let y_struct = Cstruct.create (P.byte_length) in Fe.from_montgomery y; Fe.to_bytes y_struct y; (* number must not be in montgomery domain*) let y_struct = Cstruct.rev y_struct in let y_struct2 = Cstruct.create (P.byte_length) in Fe.from_montgomery y'; Fe.to_bytes y_struct2 y';(* number must not be in montgomery domain*) let y_struct2 = Cstruct.rev y_struct2 in let ident = Cstruct.get_uint8 pk_cstruct 0 in let signY = 2 + (Cstruct.get_uint8 y_struct (P.byte_length - 2)) land 1 in let res = if Int.equal signY ident then y_struct else y_struct2 in let out = Cstruct.create ((P.byte_length * 2) + 1) in Cstruct.set_uint8 out 0 4; Cstruct.blit pk_cstruct 1 out 1 P.byte_length; Cstruct.blit res 0 out (P.byte_length + 1) P.byte_length; out let of_cstruct cs = let len = P.byte_length in if Cstruct.length cs = 0 then Error `Invalid_format else let of_cs cs = let x = Cstruct.sub cs 1 len in let y = Cstruct.sub cs (1 + len) len in validate_finite_point ~x ~y in match Cstruct.get_uint8 cs 0 with | 0x00 when Cstruct.length cs = 1 -> Ok (at_infinity ()) | 0x02 | 0x03 when Cstruct.length P.pident > 0 -> let decompressed = decompress cs in of_cs decompressed | 0x04 when Cstruct.length cs = 1 + len + len -> of_cs cs | 0x00 | 0x04 -> Error `Invalid_length | _ -> Error `Invalid_format end module type Scalar = sig val not_zero : Cstruct.t -> bool val is_in_range : Cstruct.t -> bool val of_cstruct : Cstruct.t -> (scalar, error) result val to_cstruct : scalar -> Cstruct.t val scalar_mult : scalar -> point -> point end module Make_scalar (Param : Parameters) (P : Point) : Scalar = struct let not_zero = let zero = Cstruct.create Param.byte_length in fun cs -> not (Eqaf_cstruct.equal cs zero) let is_in_range cs = not_zero cs && Eqaf_cstruct.compare_be_with_len ~len:Param.byte_length Param.n cs > 0 let of_cstruct cs = match is_in_range cs with | exception Invalid_argument _ -> Error `Invalid_length | true -> Ok (Scalar (Cstruct.rev cs)) | false -> Error `Invalid_range let to_cstruct (Scalar cs) = Cstruct.rev cs let scalar_mult (Scalar s) p = let r0 = ref (P.at_infinity ()) in let r1 = ref p in for i = Param.byte_length * 8 - 1 downto 0 do let bit = bit_at s i in let sum = P.add !r0 !r1 in let r0_double = P.double !r0 in let r1_double = P.double !r1 in r0 := P.select bit ~then_:sum ~else_:r0_double; r1 := P.select bit ~then_:r1_double ~else_:sum done; !r0 end module Make_dh (Param : Parameters) (P : Point) (S : Scalar) : Dh = struct let point_of_cs c = match P.of_cstruct c with | Ok p when not (P.is_infinity p) -> Ok p | Ok _ -> Error `At_infinity | Error _ as e -> e let point_to_cs = P.to_cstruct type secret = scalar let ?(compress = false) private_key = let public_key = S.scalar_mult private_key P.params_g in point_to_cs ~compress public_key let secret_of_cs ?compress s = match S.of_cstruct s with | Ok p -> Ok (p, share ?compress p) | Error _ as e -> e let rec generate_private_key ?g () = let candidate = Mirage_crypto_rng.generate ?g Param.byte_length in match S.of_cstruct candidate with | Ok secret -> secret | Error _ -> generate_private_key ?g () let gen_key ?compress ?g () = let private_key = generate_private_key ?g () in (private_key, share ?compress private_key) let key_exchange secret received = match point_of_cs received with | Error _ as err -> err | Ok -> Ok (P.x_of_finite_point (S.scalar_mult secret shared)) end module type Foreign_n = sig val mul : field_element -> field_element -> field_element -> unit val add : field_element -> field_element -> field_element -> unit val inv : field_element -> field_element -> unit val one : field_element -> unit val from_bytes : field_element -> Cstruct.buffer -> unit val to_bytes : Cstruct.buffer -> field_element -> unit val from_montgomery : field_element -> field_element -> unit val to_montgomery : field_element -> field_element -> unit end module Make_dsa (Param : Parameters) (F : Foreign_n) (P : Point) (S : Scalar) (H : Mirage_crypto.Hash.S) = struct let create () = Cstruct.to_bigarray (Cstruct.create Param.fe_length) type priv = scalar let priv_of_cstruct = S.of_cstruct let priv_to_cstruct = S.to_cstruct let padded msg = let l = Cstruct.length msg in let bl = Param.byte_length in let first_byte_ok () = match Param.first_byte_bits with | None -> true | Some m -> (Cstruct.get_uint8 msg 0) land (0xFF land (lnot m)) = 0 in if l > bl || (l = bl && not (first_byte_ok ())) then raise Message_too_long else if l = bl then msg else Cstruct.append (Cstruct.create (bl - l)) msg let from_be_cstruct v = let v' = create () in F.from_bytes v' (Cstruct.to_bigarray (Cstruct.rev v)); v' let to_be_cstruct v = let cs = Cstruct.create Param.byte_length in F.to_bytes (Cstruct.to_bigarray cs) v; Cstruct.rev cs (* RFC 6979: compute a deterministic k *) module K_gen (H : Mirage_crypto.Hash.S) = struct let drbg : 'a Mirage_crypto_rng.generator = let module M = Mirage_crypto_rng.Hmac_drbg (H) in (module M) let g ~key cs = let g = Mirage_crypto_rng.create ~strict:true drbg in Mirage_crypto_rng.reseed ~g (Cstruct.append (S.to_cstruct key) cs); g (* take qbit length, and ensure it is suitable for ECDSA (> 0 & < n) *) let gen g = let rec go () = let r = Mirage_crypto_rng.generate ~g Param.byte_length in if S.is_in_range r then r else go () in go () let generate ~key cs = gen (g ~key (padded cs)) end module K_gen_default = K_gen(H) type pub = point let pub_of_cstruct = P.of_cstruct let pub_to_cstruct ?(compress = false) pk = P.to_cstruct ~compress pk let generate ?g () = (* FIPS 186-4 B 4.2 *) let d = let rec one () = match S.of_cstruct (Mirage_crypto_rng.generate ?g Param.byte_length) with | Ok x -> x | Error _ -> one () in one () in let q = S.scalar_mult d P.params_g in (d, q) let x_of_finite_point_mod_n p = match P.to_affine_raw p with | None -> None | Some (x, _) -> F.to_montgomery x x; let o = create () in F.one o; F.mul x x o; F.from_montgomery x x; Some (to_be_cstruct x) let sign ~key ?k msg = let msg = padded msg in let e = from_be_cstruct msg in let g = K_gen_default.g ~key msg in let rec do_sign g = let again () = match k with | None -> do_sign g | Some _ -> invalid_arg "k not suitable" in let k' = match k with None -> K_gen_default.gen g | Some k -> k in let ksc = match S.of_cstruct k' with | Ok ksc -> ksc | Error _ -> invalid_arg "k not in range" (* if no k is provided, this cannot happen since K_gen_*.gen already preserves the Scalar invariants *) in let point = S.scalar_mult ksc P.params_g in match x_of_finite_point_mod_n point with | None -> again () | Some r -> let r_mon = from_be_cstruct r in F.to_montgomery r_mon r_mon; let kinv = create () in let kmon = from_be_cstruct k' in F.to_montgomery kmon kmon; F.inv kinv kmon; F.to_montgomery kmon kinv; let rd = create () in let dmon = from_be_cstruct (S.to_cstruct key) in F.to_montgomery dmon dmon; F.mul rd r_mon dmon; let cmon = create () in let zmon = create () in F.to_montgomery zmon e; F.add cmon zmon rd; let smon = create () in F.mul smon kmon cmon; let s = create () in F.from_montgomery s smon; let s = to_be_cstruct s in if S.not_zero s && S.not_zero r then r, s else again () in do_sign g let pub_of_priv priv = S.scalar_mult priv P.params_g let verify ~key (r, s) msg = try let r = padded r and s = padded s in if not (S.is_in_range r && S.is_in_range s) then false else let msg = padded msg in let z = from_be_cstruct msg in let s_inv = create () in let s_mon = from_be_cstruct s in F.to_montgomery s_mon s_mon; F.inv s_inv s_mon; let u1 = create () in F.to_montgomery s_inv s_inv; F.to_montgomery z z; F.mul u1 z s_inv; let u2 = create () in let r_mon = from_be_cstruct r in F.to_montgomery r_mon r_mon; F.mul u2 r_mon s_inv; F.from_montgomery u1 u1; F.from_montgomery u2 u2; match S.of_cstruct (to_be_cstruct u1), S.of_cstruct (to_be_cstruct u2) with | Ok u1, Ok u2 -> let point = P.add (S.scalar_mult u1 P.params_g) (S.scalar_mult u2 key) in begin match x_of_finite_point_mod_n point with | None -> false (* point is infinity *) | Some r' -> Cstruct.equal r r' end | Error _, _ | _, Error _ -> false with | Message_too_long -> false end module P224 : Dh_dsa = struct module Params = struct let a = Cstruct.of_hex "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFE" let b = Cstruct.of_hex "B4050A850C04B3ABF54132565044B0B7D7BFD8BA270B39432355FFB4" let g_x = Cstruct.of_hex "B70E0CBD6BB4BF7F321390B94A03C1D356C21122343280D6115C1D21" let g_y = Cstruct.of_hex "BD376388B5F723FB4C22DFE6CD4375A05A07476444D5819985007E34" let p = Cstruct.of_hex "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF000000000000000000000001" let n = Cstruct.of_hex "FFFFFFFFFFFFFFFFFFFFFFFFFFFF16A2E0B8F03E13DD29455C5C2A3D" let pident = Cstruct.empty let byte_length = 28 let fe_length = if Sys.word_size == 64 then 32 else 28 (* TODO: is this congruent with C code? *) let first_byte_bits = None end module Foreign = struct external mul : field_element -> field_element -> field_element -> unit = "mc_p224_mul" [@@noalloc] external sub : field_element -> field_element -> field_element -> unit = "mc_p224_sub" [@@noalloc] external add : field_element -> field_element -> field_element -> unit = "mc_p224_add" [@@noalloc] external to_montgomery : field_element -> unit = "mc_p224_to_montgomery" [@@noalloc] external from_bytes_buf : field_element -> Cstruct.buffer -> unit = "mc_p224_from_bytes" [@@noalloc] external set_one : field_element -> unit = "mc_p224_set_one" [@@noalloc] external nz : field_element -> bool = "mc_p224_nz" [@@noalloc] external sqr : field_element -> field_element -> unit = "mc_p224_sqr" [@@noalloc] external from_montgomery : field_element -> unit = "mc_p224_from_montgomery" [@@noalloc] external to_bytes_buf : Cstruct.buffer -> field_element -> unit = "mc_p224_to_bytes" [@@noalloc] external inv : field_element -> field_element -> unit = "mc_p224_inv" [@@noalloc] external select_c : field_element -> bool -> field_element -> field_element -> unit = "mc_p224_select" [@@noalloc] external double_c : point -> point -> unit = "mc_p224_point_double" [@@noalloc] external add_c : point -> point -> point -> unit = "mc_p224_point_add" [@@noalloc] end module Foreign_n = struct external mul : field_element -> field_element -> field_element -> unit = "mc_np224_mul" [@@noalloc] external add : field_element -> field_element -> field_element -> unit = "mc_np224_add" [@@noalloc] external inv : field_element -> field_element -> unit = "mc_np224_inv" [@@noalloc] external one : field_element -> unit = "mc_np224_one" [@@noalloc] external from_bytes : field_element -> Cstruct.buffer -> unit = "mc_np224_from_bytes" [@@noalloc] external to_bytes : Cstruct.buffer -> field_element -> unit = "mc_np224_to_bytes" [@@noalloc] external from_montgomery : field_element -> field_element -> unit = "mc_np224_from_montgomery" [@@noalloc] external to_montgomery : field_element -> field_element -> unit = "mc_np224_to_montgomery" [@@noalloc] end module P = Make_point(Params)(Foreign) module S = Make_scalar(Params)(P) module Dh = Make_dh(Params)(P)(S) module Dsa = Make_dsa(Params)(Foreign_n)(P)(S)(Mirage_crypto.Hash.SHA256) end module P256 : Dh_dsa = struct module Params = struct let a = Cstruct.of_hex "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC" let b = Cstruct.of_hex "5AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B" let g_x = Cstruct.of_hex "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296" let g_y = Cstruct.of_hex "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5" let p = Cstruct.of_hex "FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFF" let n = Cstruct.of_hex "FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551" let pident = Cstruct.of_hex "3FFFFFFFC0000000400000000000000000000000400000000000000000000000" |> Cstruct.rev (* (Params.p + 1) / 4*) let byte_length = 32 let fe_length = 32 let first_byte_bits = None end module Foreign = struct external mul : field_element -> field_element -> field_element -> unit = "mc_p256_mul" [@@noalloc] external sub : field_element -> field_element -> field_element -> unit = "mc_p256_sub" [@@noalloc] external add : field_element -> field_element -> field_element -> unit = "mc_p256_add" [@@noalloc] external to_montgomery : field_element -> unit = "mc_p256_to_montgomery" [@@noalloc] external from_bytes_buf : field_element -> Cstruct.buffer -> unit = "mc_p256_from_bytes" [@@noalloc] external set_one : field_element -> unit = "mc_p256_set_one" [@@noalloc] external nz : field_element -> bool = "mc_p256_nz" [@@noalloc] external sqr : field_element -> field_element -> unit = "mc_p256_sqr" [@@noalloc] external from_montgomery : field_element -> unit = "mc_p256_from_montgomery" [@@noalloc] external to_bytes_buf : Cstruct.buffer -> field_element -> unit = "mc_p256_to_bytes" [@@noalloc] external inv : field_element -> field_element -> unit = "mc_p256_inv" [@@noalloc] external select_c : field_element -> bool -> field_element -> field_element -> unit = "mc_p256_select" [@@noalloc] external double_c : point -> point -> unit = "mc_p256_point_double" [@@noalloc] external add_c : point -> point -> point -> unit = "mc_p256_point_add" [@@noalloc] end module Foreign_n = struct external mul : field_element -> field_element -> field_element -> unit = "mc_np256_mul" [@@noalloc] external add : field_element -> field_element -> field_element -> unit = "mc_np256_add" [@@noalloc] external inv : field_element -> field_element -> unit = "mc_np256_inv" [@@noalloc] external one : field_element -> unit = "mc_np256_one" [@@noalloc] external from_bytes : field_element -> Cstruct.buffer -> unit = "mc_np256_from_bytes" [@@noalloc] external to_bytes : Cstruct.buffer -> field_element -> unit = "mc_np256_to_bytes" [@@noalloc] external from_montgomery : field_element -> field_element -> unit = "mc_np256_from_montgomery" [@@noalloc] external to_montgomery : field_element -> field_element -> unit = "mc_np256_to_montgomery" [@@noalloc] end module P = Make_point(Params)(Foreign) module S = Make_scalar(Params)(P) module Dh = Make_dh(Params)(P)(S) module Dsa = Make_dsa(Params)(Foreign_n)(P)(S)(Mirage_crypto.Hash.SHA256) end module P384 : Dh_dsa = struct module Params = struct let a = Cstruct.of_hex "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFC" let b = Cstruct.of_hex "B3312FA7E23EE7E4988E056BE3F82D19181D9C6EFE8141120314088F5013875AC656398D8A2ED19D2A85C8EDD3EC2AEF" let g_x = Cstruct.of_hex "AA87CA22BE8B05378EB1C71EF320AD746E1D3B628BA79B9859F741E082542A385502F25DBF55296C3A545E3872760AB7" let g_y = Cstruct.of_hex "3617de4a96262c6f5d9e98bf9292dc29f8f41dbd289a147ce9da3113b5f0b8c00a60b1ce1d7e819d7a431d7c90ea0e5f" let p = Cstruct.of_hex "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFFFF0000000000000000FFFFFFFF" let n = Cstruct.of_hex "FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC7634D81F4372DDF581A0DB248B0A77AECEC196ACCC52973" let pident = Cstruct.of_hex "3FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFBFFFFFFFC00000000000000040000000" |> Cstruct.rev (* (Params.p + 1) / 4*) let byte_length = 48 let fe_length = 48 let first_byte_bits = None end module Foreign = struct external mul : field_element -> field_element -> field_element -> unit = "mc_p384_mul" [@@noalloc] external sub : field_element -> field_element -> field_element -> unit = "mc_p384_sub" [@@noalloc] external add : field_element -> field_element -> field_element -> unit = "mc_p384_add" [@@noalloc] external to_montgomery : field_element -> unit = "mc_p384_to_montgomery" [@@noalloc] external from_bytes_buf : field_element -> Cstruct.buffer -> unit = "mc_p384_from_bytes" [@@noalloc] external set_one : field_element -> unit = "mc_p384_set_one" [@@noalloc] external nz : field_element -> bool = "mc_p384_nz" [@@noalloc] external sqr : field_element -> field_element -> unit = "mc_p384_sqr" [@@noalloc] external from_montgomery : field_element -> unit = "mc_p384_from_montgomery" [@@noalloc] external to_bytes_buf : Cstruct.buffer -> field_element -> unit = "mc_p384_to_bytes" [@@noalloc] external inv : field_element -> field_element -> unit = "mc_p384_inv" [@@noalloc] external select_c : field_element -> bool -> field_element -> field_element -> unit = "mc_p384_select" [@@noalloc] external double_c : point -> point -> unit = "mc_p384_point_double" [@@noalloc] external add_c : point -> point -> point -> unit = "mc_p384_point_add" [@@noalloc] end module Foreign_n = struct external mul : field_element -> field_element -> field_element -> unit = "mc_np384_mul" [@@noalloc] external add : field_element -> field_element -> field_element -> unit = "mc_np384_add" [@@noalloc] external inv : field_element -> field_element -> unit = "mc_np384_inv" [@@noalloc] external one : field_element -> unit = "mc_np384_one" [@@noalloc] external from_bytes : field_element -> Cstruct.buffer -> unit = "mc_np384_from_bytes" [@@noalloc] external to_bytes : Cstruct.buffer -> field_element -> unit = "mc_np384_to_bytes" [@@noalloc] external from_montgomery : field_element -> field_element -> unit = "mc_np384_from_montgomery" [@@noalloc] external to_montgomery : field_element -> field_element -> unit = "mc_np384_to_montgomery" [@@noalloc] end module P = Make_point(Params)(Foreign) module S = Make_scalar(Params)(P) module Dh = Make_dh(Params)(P)(S) module Dsa = Make_dsa(Params)(Foreign_n)(P)(S)(Mirage_crypto.Hash.SHA384) end module P521 : Dh_dsa = struct module Params = struct let a = Cstruct.of_hex "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFC" let b = Cstruct.of_hex "0051953EB9618E1C9A1F929A21A0B68540EEA2DA725B99B315F3B8B489918EF109E156193951EC7E937B1652C0BD3BB1BF073573DF883D2C34F1EF451FD46B503F00" let g_x = Cstruct.of_hex "00C6858E06B70404E9CD9E3ECB662395B4429C648139053FB521F828AF606B4D3DBAA14B5E77EFE75928FE1DC127A2FFA8DE3348B3C1856A429BF97E7E31C2E5BD66" let g_y = Cstruct.of_hex "011839296a789a3bc0045c8a5fb42c7d1bd998f54449579b446817afbd17273e662c97ee72995ef42640c550b9013fad0761353c7086a272c24088be94769fd16650" let p = Cstruct.of_hex "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF" let n = Cstruct.of_hex "01FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFA51868783BF2F966B7FCC0148F709A5D03BB5C9B8899C47AEBB6FB71E91386409" let pident = Cstruct.of_hex "017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff" |> Cstruct.rev let byte_length = 66 let fe_length = if Sys.word_size == 64 then 72 else 68 (* TODO: is this congruent with C code? *) let first_byte_bits = Some 0x01 end module Foreign = struct external mul : field_element -> field_element -> field_element -> unit = "mc_p521_mul" [@@noalloc] external sub : field_element -> field_element -> field_element -> unit = "mc_p521_sub" [@@noalloc] external add : field_element -> field_element -> field_element -> unit = "mc_p521_add" [@@noalloc] external to_montgomery : field_element -> unit = "mc_p521_to_montgomery" [@@noalloc] external from_bytes_buf : field_element -> Cstruct.buffer -> unit = "mc_p521_from_bytes" [@@noalloc] external set_one : field_element -> unit = "mc_p521_set_one" [@@noalloc] external nz : field_element -> bool = "mc_p521_nz" [@@noalloc] external sqr : field_element -> field_element -> unit = "mc_p521_sqr" [@@noalloc] external from_montgomery : field_element -> unit = "mc_p521_from_montgomery" [@@noalloc] external to_bytes_buf : Cstruct.buffer -> field_element -> unit = "mc_p521_to_bytes" [@@noalloc] external inv : field_element -> field_element -> unit = "mc_p521_inv" [@@noalloc] external select_c : field_element -> bool -> field_element -> field_element -> unit = "mc_p521_select" [@@noalloc] external double_c : point -> point -> unit = "mc_p521_point_double" [@@noalloc] external add_c : point -> point -> point -> unit = "mc_p521_point_add" [@@noalloc] end module Foreign_n = struct external mul : field_element -> field_element -> field_element -> unit = "mc_np521_mul" [@@noalloc] external add : field_element -> field_element -> field_element -> unit = "mc_np521_add" [@@noalloc] external inv : field_element -> field_element -> unit = "mc_np521_inv" [@@noalloc] external one : field_element -> unit = "mc_np521_one" [@@noalloc] external from_bytes : field_element -> Cstruct.buffer -> unit = "mc_np521_from_bytes" [@@noalloc] external to_bytes : Cstruct.buffer -> field_element -> unit = "mc_np521_to_bytes" [@@noalloc] external from_montgomery : field_element -> field_element -> unit = "mc_np521_from_montgomery" [@@noalloc] external to_montgomery : field_element -> field_element -> unit = "mc_np521_to_montgomery" [@@noalloc] end module P = Make_point(Params)(Foreign) module S = Make_scalar(Params)(P) module Dh = Make_dh(Params)(P)(S) module Dsa = Make_dsa(Params)(Foreign_n)(P)(S)(Mirage_crypto.Hash.SHA512) end module X25519 = struct (* RFC 7748 *) external x25519_scalar_mult_generic : Cstruct.buffer -> Cstruct.buffer -> int -> Cstruct.buffer -> int -> unit = "mc_x25519_scalar_mult_generic" [@@noalloc] let key_len = 32 let scalar_mult in_ base = let out = Cstruct.create key_len in x25519_scalar_mult_generic out.Cstruct.buffer in_.Cstruct.buffer in_.Cstruct.off base.Cstruct.buffer base.Cstruct.off; out type secret = Cstruct.t let basepoint = let data = Cstruct.create key_len in Cstruct.set_uint8 data 0 9; data let public priv = scalar_mult priv basepoint let gen_key ?compress:_ ?g () = let secret = Mirage_crypto_rng.generate ?g key_len in secret, public secret let secret_of_cs ?compress:_ s = if Cstruct.length s = key_len then Ok (s, public s) else Error `Invalid_length let is_zero = let zero = Cstruct.create key_len in fun cs -> Cstruct.equal zero cs let key_exchange secret public = if Cstruct.length public = key_len then let res = scalar_mult secret public in if is_zero res then Error `Low_order else Ok res else Error `Invalid_length end module Ed25519 = struct external scalar_mult_base_to_bytes : Cstruct.buffer -> Cstruct.buffer -> unit = "mc_25519_scalar_mult_base" [@@noalloc] external reduce_l : Cstruct.buffer -> unit = "mc_25519_reduce_l" [@@noalloc] external muladd : Cstruct.buffer -> Cstruct.buffer -> Cstruct.buffer -> Cstruct.buffer -> unit = "mc_25519_muladd" [@@noalloc] external double_scalar_mult : Cstruct.buffer -> Cstruct.buffer -> Cstruct.buffer -> Cstruct.buffer -> int -> bool = "mc_25519_double_scalar_mult" [@@noalloc] external pub_ok : Cstruct.buffer -> bool = "mc_25519_pub_ok" [@@noalloc] type pub = Cstruct.t type priv = Cstruct.t (* RFC 8032 *) let key_len = 32 let public secret = (* section 5.1.5 *) (* step 1 *) let h = Mirage_crypto.Hash.SHA512.digest secret in (* step 2 *) let s, rest = Cstruct.split h key_len in Cstruct.set_uint8 s 0 (Cstruct.get_uint8 s 0 land 248); Cstruct.set_uint8 s 31 ((Cstruct.get_uint8 s 31 land 127) lor 64); (* step 3 and 4 *) let public = Cstruct.create key_len in scalar_mult_base_to_bytes public.Cstruct.buffer s.Cstruct.buffer; public, (s, rest) let pub_of_priv secret = fst (public secret) let priv_of_cstruct cs = if Cstruct.length cs = key_len then Ok cs else Error `Invalid_length let priv_to_cstruct priv = priv let pub_of_cstruct cs = if Cstruct.length cs = key_len then let cs_copy = Cstruct.create key_len in Cstruct.blit cs 0 cs_copy 0 key_len; if pub_ok cs_copy.Cstruct.buffer then Ok cs_copy else Error `Not_on_curve else Error `Invalid_length let pub_to_cstruct pub = pub let generate ?g () = let secret = Mirage_crypto_rng.generate ?g key_len in secret, pub_of_priv secret let sign ~key msg = (* section 5.1.6 *) let pub, (s, prefix) = public key in let r = Mirage_crypto.Hash.SHA512.digest (Cstruct.append prefix msg) in reduce_l r.Cstruct.buffer; let r_big = Cstruct.create key_len in scalar_mult_base_to_bytes r_big.Cstruct.buffer r.Cstruct.buffer; let k = Mirage_crypto.Hash.SHA512.digest (Cstruct.concat [ r_big ; pub ; msg ]) in reduce_l k.Cstruct.buffer; let s_out = Cstruct.create key_len in muladd s_out.Cstruct.buffer k.Cstruct.buffer s.Cstruct.buffer r.Cstruct.buffer; Cstruct.append r_big s_out let verify ~key signature ~msg = (* section 5.1.7 *) if Cstruct.length signature = 2 * key_len then let r, s = Cstruct.split signature key_len in let s_smaller_l = (* check s within 0 <= s < L *) let s' = Cstruct.create (key_len * 2) in Cstruct.blit s 0 s' 0 key_len; reduce_l s'.Cstruct.buffer; let s'' = Cstruct.(append s (create key_len)) in Cstruct.equal s'' s' in if s_smaller_l then begin let k = Mirage_crypto.Hash.SHA512.digest (Cstruct.concat [ r ; key ; msg ]) in reduce_l k.Cstruct.buffer; let r' = Cstruct.create key_len in let success = double_scalar_mult r'.Cstruct.buffer k.Cstruct.buffer key.Cstruct.buffer s.Cstruct.buffer s.Cstruct.off in success && Cstruct.equal r r' end else false else false end