package mesh
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Source file meshF.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172
# 1 "src/meshFC.ml" (* Functions for layout fortran_layout. ***********************************************************************) open Printf open Bigarray open Mesh_common type mesh = fortran_layout t type vec = fortran_layout Mesh_common.vec type mat = fortran_layout Mesh_common.mat type int_mat = fortran_layout Mesh_common.int_mat type int_vec = fortran_layout Mesh_common.int_vec let layout = fortran_layout;; let empty_vec = Array1.create int layout 0 let empty_mat2 = Array2.create (float64) fortran_layout (2) (0) let empty_mat4 = Array2.create (float64) fortran_layout (4) (0) let empty_int_mat2 = Array2.create (int) fortran_layout (2) (0) let empty_int_mat3 = Array2.create (int) fortran_layout (3) (0) let check_point name point = if Array2.dim2(point) = 0 then invalid_arg(name ^ ": points cannot be empty"); if Array2.dim1(point) <> 2 then invalid_arg(name ^ ": dim1 points must be 2") let check_point_marker name point = function | None -> empty_vec | Some m -> let n = Array1.dim m in if 0 < n && n < Array2.dim2(point) then invalid_arg(name ^ ": point_marker too small"); m let check_segment_marker name segment = function | None -> empty_vec | Some m -> let n = Array1.dim m in if 0 < n && n < Array2.dim2(segment) then invalid_arg(name ^ ": segment_marker too small"); m let check_hole name = function | None -> empty_mat2 | Some h -> if Array2.dim2(h) > 0 && Array2.dim1(h) <> 2 then invalid_arg(name ^ ": dim1 hole must be 2"); h let check_region name = function | None -> empty_mat4 | Some r -> if Array2.dim2(r) > 0 && Array2.dim1(r) <> 4 then invalid_arg(name ^ ": dim1 region must be 4"); r let pslg ~hole ~region ~point_marker ~point ~segment_marker ~segment = check_point "Mesh.pslg" point; let point_marker = check_point_marker "Mesh.pslg" point point_marker in let segment_marker = check_segment_marker "Mesh.pslg" segment segment_marker in let hole = check_hole "Mesh.pslg" hole in let region = check_region "Mesh.pslg" region in (object method point = point method point_marker = point_marker method segment = segment method segment_marker = segment_marker method hole = hole method region = region end : fortran_layout pslg) (* Similar to [make_mesh] but with some elementary checks. *) let create ~hole ~region ~point_marker ~point ~segment_marker ~segment ~neighbor ~edge ~edge_marker ~triangle = check_point "Mesh.create" point; let point_marker = check_point_marker "Mesh.create" point point_marker in let segment = match segment with | None -> empty_int_mat2 | Some s -> if Array2.dim2(s) > 0 && Array2.dim1(s) <> 2 then invalid_arg "Mesh.create: dim1 segment must be 2"; s in let segment_marker = check_segment_marker "Mesh.create" segment segment_marker in let hole = check_hole "Mesh.create" hole in let region = check_region "Mesh.create" region in if Array2.dim2(triangle) = 0 then invalid_arg "Mesh.create: triangle cannot be empty"; if Array2.dim1(triangle) < 3 then invalid_arg "Mesh.create: dim1 triangle must be at least 3"; let neighbor = match neighbor with | None -> empty_int_mat3 | Some nbh -> if Array2.dim2(nbh) > 0 then ( if Array2.dim2(nbh) <> Array2.dim2(triangle) then invalid_arg "Mesh.create: dim2 neighbor <> dim2 triangle"; if Array2.dim1(nbh) <> 3 then invalid_arg "Mesh.create: dim1 neighbor <> 3"; ); nbh in let edge = match edge with | None -> empty_int_mat2 | Some e -> if Array2.dim2(e) > 0 && Array2.dim1(e) <> 2 then invalid_arg "Mesh.create: dim1 edge <> 2"; e in let edge_marker = match edge_marker with | None -> empty_vec | Some e -> if Array1.dim e > 0 && Array1.dim e <> Array2.dim2(edge) then invalid_arg "Mesh.create: dim2 edge_marker <> dim2 edge"; e in (object method point = point method point_marker = point_marker method segment = segment method segment_marker = segment_marker method hole = hole method region = region method triangle = triangle method neighbor = neighbor method edge = edge method edge_marker = edge_marker end : fortran_layout t) (** Return the smaller box (xmin, xmax, ymin, ymax) containing the [mesh]. *) let bounding_box (mesh: mesh) = let xmin = ref infinity and xmax = ref neg_infinity and ymin = ref infinity and ymax = ref neg_infinity in let point = mesh#point in for i = 1 to Array2.dim2(point) do let x = point.{1,i} and y = point.{2,i} in if x > !xmax then xmax := x; if x < !xmin then xmin := x; if y > !ymax then ymax := y; if y < !ymin then ymin := y; done; (!xmin, !xmax, !ymin, !ymax) let latex_write ?edge:(edge_color=fun _ -> Some black) (mesh: mesh) fh = let edge = mesh#edge in let pt = mesh#point in if Array2.dim2(edge) = 0 then invalid_arg "Mesh.latex: mesh#edge must be nonempty"; if Array2.dim1(edge) <> 2 then invalid_arg "Mesh.latex: mesh#edge must have 2 rows (fortran)"; if Array2.dim2(pt) = 0 then invalid_arg "Mesh.latex: mesh#point must be nonempty"; if Array2.dim1(pt) <> 2 then invalid_arg "Mesh.latex: mesh#point must have 2 rows (fortran)"; let xmin, xmax, ymin, ymax = bounding_box mesh in latex_begin fh (xmax -. xmin) (ymax -. ymin) xmin ymin; (* Write lines *) fprintf fh " %% %i triangles\n" (Array2.dim2(mesh#triangle)); for e = 1 to Array2.dim2(edge) do match edge_color e with | None -> () | Some color -> let i1 = edge.{1,e} and i2 = edge.{2,e} in let p1 = { x = pt.{1,i1}; y = pt.{2,i1} } and p2 = { x = pt.{1,i2}; y = pt.{2,i2} } in line fh color p1 p2 done; (* Write points *) fprintf fh " %% %i points\n" (Array2.dim2(pt)); for i = 1 to Array2.dim2(pt) do point_xy fh i (pt.{1,i}) (pt.{2,i}); done; latex_end fh let latex ?edge mesh filename = let fh = open_out filename in try latex_write ?edge mesh fh; close_out fh with e -> close_out fh; raise e let scilab (mesh: mesh) ?(longitude=70.) ?(azimuth=60.) ?(mode=`Triangles) ?(box=`Full) ?edgecolor (z: vec) fname = let triangle = mesh#triangle in let pt = mesh#point in if Array2.dim2(triangle) = 0 then invalid_arg "Mesh.scilab: mesh#triangle must be nonempty"; if Array2.dim1(triangle) < 3 then invalid_arg "Mesh.scilab: mesh#triangle must have at least \ 3 rows (fortran)"; if Array2.dim2(pt) = 0 then invalid_arg "Mesh.scilab: mesh#point must be nonempty"; if Array2.dim1(pt) <> 2 then invalid_arg "Mesh.scilab: mesh#point must have 2 rows (fortran)"; if Array1.dim z < Array2.dim2(pt) then invalid_arg "Mesh.scilab: vector too small"; let fname = if Filename.check_suffix fname ".sci" then Filename.chop_extension fname else fname in let sci = fname ^ ".sci" and xf = fname ^ "_x.dat" and yf = fname ^ "_y.dat" and zf = fname ^ "_z.dat" in let mode = match mode with | `Triangles -> 1 | `Triangles_only -> 0 | `No_triangles -> -1 in let box = match box with | `None -> 0 | `Behind -> 2 | `Box_only -> 3 | `Full -> 4 in let edgecolor, er, eg, eb = match edgecolor with | None -> false, 0., 0., 0. | Some(`Color c) -> (true, float((c lsr 16) land 0xFF) /. 255., float((c lsr 8) land 0xFF) /. 255., float(c land 0xFF) /. 255.) | Some(`Grey c) -> if c <= 0. || c > 1. then (false, 0., 0., 0.) else (true, c, c, c) in let fh = open_out sci in (* Put the edge color at the bottom of the colormap so it is usually hidden. Moreover, put enough color in the map so the edge color is seldom drawn. *) fprintf fh "mode(0);\n\ // Run in Scilab with: exec('%s')\n\ // Written by the OCaml Mesh module (version 0.9.5).\n\ // mesh: %i triangles, %i points.\n\ ocaml = struct('f', scf(), 'e', null, \ 'x', fscanfMat('%s'), 'y', fscanfMat('%s'), \ 'z', fscanfMat('%s'));\n\ clf();\n\ ocaml.e = gce();\n\ ocaml.e.hiddencolor = -1;\n\ ocaml.f.color_map = jetcolormap(100);\n" sci (Array2.dim2(triangle)) (Array2.dim2(pt)) (Filename.basename xf) (Filename.basename yf) (Filename.basename zf); if edgecolor && mode >= 0 then fprintf fh "ocaml.f.color_map(1,:) = [%g, %g, %g];\n\ xset('color', 1);\n" er eg eb; fprintf fh "plot3d1(ocaml.x, ocaml.y, ocaml.z, theta=%g, alpha=%g, \ flag=[%d,2,%d]);\n\ disp('Save: xs2pdf(ocaml.f, ''%s.pdf'')');\n" longitude azimuth mode box (Filename.basename fname); close_out fh; let save_mat fname coord = let fh = open_out fname in (* We traverse several times the triangles but Scilab will not have to transpose the matrices. *) for point = 1 to 3 do for t = 1 to Array2.dim2(triangle) do fprintf fh "%.16e " (coord (triangle.{point,t})) done; fprintf fh "\n"; done; close_out fh in save_mat xf (fun i -> pt.{1,i}); save_mat yf (fun i -> pt.{2,i}); save_mat zf (fun i -> z.{i}) let is_allowed_matlab c = ('0' <= c && c <= '9') || ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || c = '_' let matlab (mesh: mesh) ?(edgecolor=`Color 0) ?(linestyle="-") ?(facealpha=1.) (z: vec) fname = let tr = mesh#triangle in let pt = mesh#point in if Array2.dim2(tr) = 0 then invalid_arg "Mesh.matlab: mesh#triangle must be nonempty"; if Array2.dim1(tr) < 3 then invalid_arg "Mesh.matlab: mesh#triangle must have at least \ 3 rows (fortran)"; if Array2.dim2(pt) = 0 then invalid_arg "Mesh.matlab: mesh#point must be nonempty"; if Array2.dim1(pt) <> 2 then invalid_arg "Mesh.matlab: mesh#point must have 2 rows (fortran)"; let dir = Filename.dirname fname and base = Filename.basename fname in let base = if Filename.check_suffix base ".m" then Bytes.unsafe_of_string(String.sub base 0 (String.length base - 2)) else Bytes.of_string base in (* Matlab filenames can contain only alphanumeric characters and underscores. Convert all other characters to underscore *) for i = 0 to Bytes.length base - 1 do if not(is_allowed_matlab (Bytes.get base i)) then Bytes.set base i '_' done; let base = Bytes.unsafe_to_string base in let mat = Filename.concat dir (base ^ ".m") in let save_xy fh coord = for p = 1 to Array2.dim2(pt) do fprintf fh "%.13g " (pt.{coord,p}) done; fprintf fh "\n" in let fh = open_out mat in fprintf fh "%% Run in Matlab with: run %s\n\ %% Created by the OCaml Mesh module (version 0.9.5).\n\ %% print -painters -dpdf -r600 %s.pdf\n" mat base; fprintf fh "mesh_x = [" ; save_xy fh 1; fprintf fh "];\nmesh_y = ["; save_xy fh 2; fprintf fh "];\nmesh_z = ["; for i = 1 to Array1.dim(z) do fprintf fh "%.13f " z.{i} done; fprintf fh "];\nmesh_triangles = ["; for t = 1 to Array2.dim2(tr) do fprintf fh "%i %i %i; " (tr.{1,t}) (tr.{2,t}) (tr.{3,t}) done; let edgecolor = match edgecolor with | `None -> "'none'" | `Flat -> "'flat'" | `Interp -> "'interp'" | `Color c -> if c < 0 then "'none'" else let b = float(c land 0xFF) /. 255. and g = float((c lsr 8) land 0xFF) /. 255. and r = float((c lsr 16) land 0xFF) /. 255. in sprintf "[%g,%g,%g]" r g b in let facealpha = if facealpha < 0. then 0. else if facealpha > 1. then 1. else facealpha in (* FIXME: protect against strings containing "'". *) fprintf fh "];\ntrisurf(mesh_triangles, mesh_x, mesh_y, mesh_z, \ 'FaceAlpha', %f, 'EdgeColor', %s, 'LineStyle', '%s');\n" facealpha edgecolor linestyle; close_out fh ;; (* Sort the vertices at node [n0] by increasing (counterclockwise) angle w.r.t. the base vertex [i0]. [TriangularSurfacePlot] (not [PlanarGraphPlot] it seems) requires the vertices to be ordered. *) let sort_counterclockwise (pt: mat) n0 = function | ([] | [_]) as adj -> adj | n1 :: tl -> let x0 = pt.{1, n0} and y0 = pt.{2, n0} in let dx1 = pt.{1, n1} -. x0 and dy1 = pt.{2, n1} -. y0 in (* Since [atan2] returns an angle in ]-pi, pi], the angle of (dx1,dy1) will be set to pi so that the order given by the angles is correct. Also there is no need to norm the vectors [(dx1,dy1)] and [(dx,dy)] because that will only dilate [(e1,e2)] which does not change the value of [atan2]. *) let angle n = let dx = pt.{1, n} -. x0 and dy = pt.{2, n} -. y0 in let e1 = -. dx *. dx1 -. dy *. dy1 and e2 = dx *. dy1 -. dy *. dx1 in atan2 e2 e1 in (* Add angles *) let tl = List.map (fun n -> (n, angle n)) tl in let tl = List.fast_sort (fun (_,a1) (_,a2) -> compare a1 a2) tl in n1 :: List.map (fun (n,_) -> n) tl ;; (* Return an array [adj] such that [adj.(i)] is the list of the adjacent nodes to [i]. *) let adjacency (mesh: mesh) = let pt = mesh#point in let n = Array2.dim2(pt) in let adj = Array.make (n + 1) [] in let edge = mesh#edge in for e = 1 to Array2.dim2(edge) do let i1 = edge.{1,e} and i2 = edge.{2,e} in adj.(i1) <- i2 :: adj.(i1); adj.(i2) <- i1 :: adj.(i2); done; (* This is important for TriangularSurfacePlot (that uses the order for orientation?). *) Array.mapi (fun n0 adj -> sort_counterclockwise pt n0 adj) adj let is_allowed_mathematica c = ('0' <= c && c <= '9') || ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') let count_mathematica_allowed base = let n = ref 0 in for i = 0 to String.length base - 1 do if is_allowed_mathematica (String.unsafe_get base i) then incr n done; !n (* Remove all chars that are not alphanumeric. *) let mathematica_safe base = let len = count_mathematica_allowed base in if len = String.length base then base else ( let base' = Bytes.create len in let j = ref 0 in for i = 0 to String.length base - 1 do let c = String.unsafe_get base i in if is_allowed_mathematica c then ( Bytes.set base' !j c; incr j; ) done; Bytes.unsafe_to_string base' ) let mathematica_print_float fh f = let s = Bytes.unsafe_of_string(sprintf "%.16g" f) in try let e = Bytes.index s 'e' in output fh s 0 e; output_string fh "*^"; output fh s (e + 1) (Bytes.length s - e - 1) with Not_found -> output fh s 0 (Bytes.length s) let mathematica (mesh: mesh) (z: vec) fname = let pt = mesh#point in if Array2.dim2(pt) = 0 then invalid_arg "Mesh.mathematica: mesh#point must be nonempty"; if Array2.dim1(pt) <> 2 then invalid_arg "Mesh.mathematica: mesh#point must have 2 rows (fortran)"; if Array2.dim2(mesh#edge) = 0 then invalid_arg "Mesh.mathematica: mesh#edge must be nonempty"; if Array2.dim1(mesh#edge) <> 2 then invalid_arg "Mesh.mathematica: mesh#edge must have 2 rows (fortran)"; let base = Filename.basename fname in let pkg, fname = if Filename.check_suffix base ".m" then mathematica_safe(String.sub base 0 (String.length base - 2)), fname else mathematica_safe base, fname ^ ".m" in let pkg = String.capitalize_ascii pkg in let fh = open_out fname in fprintf fh "(* Created by the OCaml Mesh module (version 0.9.5)) \ *)\n"; fprintf fh "%s`xyz = {" pkg; output_string fh "{"; mathematica_print_float fh pt.{1, 1}; output_string fh ", "; mathematica_print_float fh pt.{2, 1}; output_string fh ", "; mathematica_print_float fh z.{1}; output_string fh "}"; for i = 1 + 1 to Array2.dim2(pt) do output_string fh ", {"; mathematica_print_float fh pt.{1, i}; output_string fh ", "; mathematica_print_float fh pt.{2, i}; output_string fh ", "; mathematica_print_float fh z.{i}; output_string fh "}" done; fprintf fh "};\n\n"; let adj = adjacency mesh in let output_adj i = (* mathematica indices start at 1 *) match adj.(i) with | [] -> fprintf fh "{%i, {}}" (i) | n :: tl -> fprintf fh "{%i, {%i" (i) (n); List.iter (fun n -> fprintf fh ", %i" (n)) tl; fprintf fh"}}" in fprintf fh "%s`adj = {" pkg; output_adj 1; for i = 1 + 1 to Array.length adj - 1 do output_string fh ", "; output_adj i done; fprintf fh "};\n\n"; fprintf fh "Needs[\"ComputationalGeometry`\"];\n"; fprintf fh "TriangularSurfacePlot[%s`xyz, %s`adj, Axes -> True]\n" pkg pkg; close_out fh ;; (************************************************************************) (* mesh_level_curvesF.ml included by "make_FC_code.ml" with Mesh = "Mesh". *) (* Generic code to draw level cuves. To be included in a file that defines the drawing primitives. *) module M = Map.Make(struct type t = int let compare x y = compare (x:int) y end) (* Module to build a structure helping to determine when the segment joining 2 points are on the boundary. *) module Edge = struct let make() = ref M.empty let add_edge t i1 i2 = assert(i1 < i2); try let v = M.find i1 !t in v := i2 :: !v with Not_found -> t := M.add i1 (ref [i2]) !t (* Declare the segment joining the points of indexes [i1] and [i2] as being part of the boundary. It is auusmed that [i1 <> i2]. *) let add t i1 i2 = if i1 < i2 then add_edge t i1 i2 else add_edge t i2 i1 let on_boundary t i1 i2 = assert(i1 < i2); try let v = M.find i1 !t in List.mem i2 !v with Not_found -> false (* Tells whether the segment (if any) joining the points of indices [i1] and [i2] is on the boundary (according to the information in [t]). It is assumed that [i1 <> i2]. *) let on t i1 i2 = if i1 < i2 then on_boundary t i1 i2 else on_boundary t i2 i1 end;; let default_level_eq l1 l2 = abs_float(l1 -. l2) <= 1E-8 *. (abs_float l1 +. abs_float l2) let mid p q = {x = 0.5 *. (p.x +. q.x); y = 0.5 *. (p.y +. q.y) } (* Intersection of the curve et level [l] and the line passing through (x1,y1) and (x2,y2). [z1 <> z2] assumed. *) let intercept {x=x1; y=y1} z1 {x=x2; y=y2} z2 l = let d = z1 -. z2 and a = l -. z2 and b = z1 -. l in {x = (a *. x1 +. b *. x2) /. d; y = (a *. y1 +. b *. y2) /. d } let draw_levels ~boundary (mesh: mesh) (z: vec) ?(level_eq=default_level_eq) levels surf = let edge = mesh#edge in let marker = mesh#edge_marker in let pt = mesh#point in if Array2.dim2(edge) = 0 then invalid_arg("Mesh.level_curves: mesh#edge must be nonempty"); if Array2.dim1(edge) <> 2 then invalid_arg("Mesh.level_curves: mesh#edge must have 2 rows (fortran)"); if Array1.dim marker < Array2.dim2(edge) then invalid_arg("Mesh.level_curves: dim mesh#edge_marker < number edges"); if Array2.dim2(pt) = 0 then invalid_arg("Mesh.level_curves: mesh#point must be nonempty"); if Array2.dim1(pt) <> 2 then invalid_arg("Mesh.level_curves: mesh#point must have 2 rows (fortran)"); let bd = Edge.make() in (* Draw the boundary edges *) for e = 1 to Array2.dim2(edge) do let m = marker.{e} in if m <> 0 (* not an interior point *) then begin let i1 = edge.{1,e} and i2 = edge.{2,e} in Edge.add bd i1 i2; (* collect boundary points *) match boundary m with | None -> () | Some color -> let p1 = { x = pt.{1,i1}; y = pt.{2,i1} } and p2 = { x = pt.{1,i2}; y = pt.{2,i2} } in line surf color p1 p2 end done; let tr = mesh#triangle in if Array2.dim2(tr) = 0 then invalid_arg("Mesh.level_curves: mesh#triangle must be nonempty"); if Array2.dim1(tr) < 3 then invalid_arg("Mesh.level_curves: mesh#triangle must have at least 3 \ rows (fortran) or 3 columns (C)"); let marker = mesh#point_marker in for t = 1 to Array2.dim2(tr) do let i1 = tr.{1,t} and i2 = tr.{2,t} and i3 = tr.{3,t} in let p1 = { x = pt.{1,i1}; y = pt.{2,i1} } and z1 = z.{i1} in let p2 = { x = pt.{1,i2}; y = pt.{2,i2} } and z2 = z.{i2} in let p3 = { x = pt.{1,i3}; y = pt.{2,i3} } and z3 = z.{i3} in List.iter (fun (l, color) -> (* Draw the level curve [l] on the triangle [t] except if that curve is on the boundary. *) if level_eq l z1 then ( if level_eq l z2 then ( if level_eq l z3 then (* The entire triangle is at the same level. Try to remove boundary edges. *) if Edge.on bd i1 i2 then if Edge.on bd i1 i3 || Edge.on bd i2 i3 then triangle surf color p1 p2 p3 (* Full triangle ! *) else line surf color p3 (mid p1 p2) else (* i1-i2 not on boundary *) if Edge.on bd i1 i3 then if Edge.on bd i2 i3 then triangle surf color p1 p2 p3 else line surf color p2 (mid p1 p3) else (* i1-i3 not on boundary *) if Edge.on bd i2 i3 then line surf color p1 (mid p2 p3) else triangle surf color p1 p2 p3 (* Full triangle ! *) else (* l = z1 = z2 <> z3 *) if not(Edge.on bd i1 i2) then line surf color p1 p2 ) else (* l = z1 <> z2 *) if level_eq l z3 then (* l = z1 = z3 <> z2 *) (if not(Edge.on bd i1 i3) then line surf color p1 p3) else if (z2 < l && l < z3) || (z3 < l && l < z2) then line surf color p1 (intercept p2 z2 p3 z3 l) ) else if l < z1 then ( if level_eq l z2 then if level_eq l z3 then (if not(Edge.on bd i2 i3) then line surf color p2 p3) else if l > z3 then (* z3 < l = z2 < z1 *) line surf color p2 (intercept p1 z1 p3 z3 l) else (* corner point, inside the domain. Ususally this happens because the level line passes through a triangle corner. *) (if marker.{i2} = 0 then point surf i2 p2) else if l < z2 then ( if level_eq l z3 then (if marker.{i3} = 0 then point surf i3 p3) else if l > z3 then line surf color (intercept p1 z1 p3 z3 l) (intercept p2 z2 p3 z3 l) ) else (* z2 < l < z1 *) line surf color (intercept p1 z1 p2 z2 l) (if level_eq l z3 then p3 else if l < z3 then intercept p2 z2 p3 z3 l else (* l > z3 *) intercept p1 z1 p3 z3 l) ) else (* l > z1 *) ( (* Symmetric of [l < z1] with all inequalities reversed *) if level_eq l z2 then if level_eq l z3 then (if not(Edge.on bd i2 i3) then line surf color p2 p3) else if l < z3 then (* z1 < l = z2 < z3 *) line surf color p2 (intercept p1 z1 p3 z3 l) else (* corner point, inside the domain *) (if marker.{i2} = 0 then point surf i2 p2) else if l > z2 then ( if level_eq l z3 then (if marker.{i3} = 0 then point surf i3 p3) else if l < z3 then line surf color (intercept p1 z1 p3 z3 l) (intercept p2 z2 p3 z3 l) ) else (* z1 < l < z2 *) line surf color (intercept p1 z1 p2 z2 l) (if level_eq l z3 then p3 else if l > z3 then intercept p2 z2 p3 z3 l else (* l < z3 *) intercept p1 z1 p3 z3 l) ) ) levels done ;; type polygon_fill = | Tri123 (* triangle with edge 1 and cut in edges 2, 3 *) | Tri231 | Tri312 | Quad123 (* Quadrilateral with edges 1-2 and 1-3 of the triangle cut *) | Quad231 | Quad312 | Whole | Empty;; (* base 3: c1 + 1 + 3(c2 + 1) + 9(c3 + 1). The [c1], [c2] and [c3] are the comparisons of the 3 corners with the desired level. *) let index c1 c2 c3 = c1 + 3 * c2 + 9 * c3 + 13 let super = let d = Array.make 27 Empty in d.(index( 1) ( 1) ( 1)) <- Whole; d.(index( 1) ( 1) ( 0)) <- Whole; d.(index( 1) ( 1) (-1)) <- Quad312; d.(index( 1) ( 0) ( 1)) <- Whole; d.(index( 1) ( 0) ( 0)) <- Whole; d.(index( 1) ( 0) (-1)) <- Tri123; d.(index( 1) (-1) ( 1)) <- Quad231; d.(index( 1) (-1) ( 0)) <- Tri123; d.(index( 1) (-1) (-1)) <- Tri123; d.(index( 0) ( 1) ( 1)) <- Whole; d.(index( 0) ( 1) ( 0)) <- Whole; d.(index( 0) ( 1) (-1)) <- Tri231; d.(index( 0) ( 0) ( 1)) <- Whole; d.(index( 0) ( 0) ( 0)) <- Empty; (* > 0 required *) d.(index( 0) ( 0) (-1)) <- Empty; d.(index( 0) (-1) ( 1)) <- Tri312; d.(index( 0) (-1) ( 0)) <- Empty; d.(index( 0) (-1) (-1)) <- Empty; d.(index(-1) ( 1) ( 1)) <- Quad123; d.(index(-1) ( 1) ( 0)) <- Tri231; d.(index(-1) ( 1) (-1)) <- Tri231; d.(index(-1) ( 0) ( 1)) <- Tri312; d.(index(-1) ( 0) ( 0)) <- Empty; d.(index(-1) ( 0) (-1)) <- Empty; d.(index(-1) (-1) ( 1)) <- Tri312; d.(index(-1) (-1) ( 0)) <- Empty; d.(index(-1) (-1) (-1)) <- Empty; d let sub = let d = Array.make 27 Empty in d.(index( 1) ( 1) ( 1)) <- Empty; d.(index( 1) ( 1) ( 0)) <- Empty; d.(index( 1) ( 1) (-1)) <- Tri312; d.(index( 1) ( 0) ( 1)) <- Empty; d.(index( 1) ( 0) ( 0)) <- Empty; d.(index( 1) ( 0) (-1)) <- Tri312; d.(index( 1) (-1) ( 1)) <- Tri231; d.(index( 1) (-1) ( 0)) <- Tri231; d.(index( 1) (-1) (-1)) <- Quad123; d.(index( 0) ( 1) ( 1)) <- Empty; d.(index( 0) ( 1) ( 0)) <- Empty; d.(index( 0) ( 1) (-1)) <- Tri312; d.(index( 0) ( 0) ( 1)) <- Empty; d.(index( 0) ( 0) ( 0)) <- Empty; (* < 0 required *) d.(index( 0) ( 0) (-1)) <- Whole; d.(index( 0) (-1) ( 1)) <- Tri231; d.(index( 0) (-1) ( 0)) <- Whole; d.(index( 0) (-1) (-1)) <- Whole; d.(index(-1) ( 1) ( 1)) <- Tri123; d.(index(-1) ( 1) ( 0)) <- Tri123; d.(index(-1) ( 1) (-1)) <- Quad231; d.(index(-1) ( 0) ( 1)) <- Tri123; d.(index(-1) ( 0) ( 0)) <- Whole; d.(index(-1) ( 0) (-1)) <- Whole; d.(index(-1) (-1) ( 1)) <- Quad312; d.(index(-1) (-1) ( 0)) <- Whole; d.(index(-1) (-1) (-1)) <- Whole; d let draw_xxx_level decision name ?(boundary=(fun _ -> Some black)) (mesh: mesh) (z: vec) l color surf = let edge = mesh#edge in let edge_marker = mesh#edge_marker in let pt = mesh#point in if Array2.dim2(edge) = 0 then invalid_arg("Mesh" ^ name ^ ": mesh#edge must be nonempty"); if Array2.dim1(edge) <> 2 then invalid_arg("Mesh" ^ name ^ ": mesh#edge must have 2 rows (fortran)"); if Array1.dim edge_marker < Array2.dim2(edge) then invalid_arg("Mesh" ^ name ^ ": dim mesh#edge_marker < number edges"); if Array2.dim2(pt) = 0 then invalid_arg("Mesh" ^ name ^ ": mesh#point must be nonempty"); if Array2.dim1(pt) <> 2 then invalid_arg("Mesh" ^ name ^ ": mesh#point must have 2 rows (fortran)"); let tr = mesh#triangle in if Array2.dim2(tr) = 0 then invalid_arg("Mesh" ^ name ^ ": mesh#triangle must be nonempty"); if Array2.dim1(tr) < 3 then invalid_arg("Mesh" ^ name ^ ": mesh#triangle must have at least 3 \ rows (fortran) or 3 columns (C)"); for t = 1 to Array2.dim2(tr) do let i1 = tr.{1,t} and i2 = tr.{2,t} and i3 = tr.{3,t} in let p1 = { x = pt.{1,i1}; y = pt.{2,i1} } and z1 = z.{i1} in let p2 = { x = pt.{1,i2}; y = pt.{2,i2} } and z2 = z.{i2} in let p3 = { x = pt.{1,i3}; y = pt.{2,i3} } and z3 = z.{i3} in match decision.(index (compare z1 l) (compare z2 l) (compare z3 l)) with | Tri123 -> fill_triangle surf color p1 (intercept p1 z1 p2 z2 l) (intercept p1 z1 p3 z3 l) | Tri231 -> fill_triangle surf color p2 (intercept p2 z2 p3 z3 l) (intercept p2 z2 p1 z1 l) | Tri312 -> fill_triangle surf color p3 (intercept p3 z3 p1 z1 l) (intercept p3 z3 p2 z2 l) | Quad123 -> fill_quadrilateral surf color (intercept p1 z1 p2 z2 l) (intercept p1 z1 p3 z3 l) p3 p2 | Quad231 -> fill_quadrilateral surf color (intercept p2 z2 p3 z3 l) (intercept p2 z2 p1 z1 l) p1 p3 | Quad312 -> fill_quadrilateral surf color (intercept p3 z3 p1 z1 l) (intercept p3 z3 p2 z2 l) p2 p1 | Whole -> fill_triangle surf color p1 p2 p3 | Empty -> () done; (* Draw the boundary edges (over the filled area) *) for e = 1 to Array2.dim2(edge) do let m = edge_marker.{e} in if m <> 0 (* not an interior point *) then begin match boundary m with | None -> () | Some color -> let i1 = edge.{1,e} and i2 = edge.{2,e} in let p1 = { x = pt.{1,i1}; y = pt.{2,i1} } and p2 = { x = pt.{1,i2}; y = pt.{2,i2} } in line surf color p1 p2 end done let draw_super_level ?boundary mesh z level color surf = draw_xxx_level super ".super_level" ?boundary mesh z level color surf let draw_sub_level ?boundary mesh z level color surf = draw_xxx_level sub ".sub_level" ?boundary mesh z level color surf ;; (************************************************************************) let level_curves ?(boundary=(fun _ -> Some black)) (mesh: mesh) (z: vec) ?level_eq levels fname = let fh = open_out fname in let xmin, xmax, ymin, ymax = bounding_box mesh in latex_begin fh (xmax -. xmin) (ymax -. ymin) xmin ymin; draw_levels ~boundary mesh z ?level_eq levels fh; latex_end fh; close_out fh let super_level ?boundary (mesh: mesh) (z: vec) level color fname = let fh = open_out fname in let xmin, xmax, ymin, ymax = bounding_box mesh in latex_begin fh (xmax -. xmin) (ymax -. ymin) xmin ymin; draw_super_level ?boundary mesh z level color fh; latex_end fh; close_out fh let sub_level ?boundary (mesh: mesh) (z: vec) level color fname = let fh = open_out fname in let xmin, xmax, ymin, ymax = bounding_box mesh in latex_begin fh (xmax -. xmin) (ymax -. ymin) xmin ymin; draw_sub_level ?boundary mesh z level color fh; latex_end fh; close_out fh (* Determine the number of superdiagonals + 1 main diagonal *) let band_height_P1 filter (mesh: mesh) = let tr = mesh#triangle in let kd = ref 0 in match filter with | None -> for t = 1 to Array2.dim2(tr) do let i1 = tr.{1,t} and i2 = tr.{2,t} and i3 = tr.{3,t} in kd := max4 !kd (abs(i1 - i2)) (abs(i2 -i3)) (abs(i3 - i1)) done; !kd + 1 | Some cond -> for t = 1 to Array2.dim2(tr) do let i1 = tr.{1,t} and i2 = tr.{2,t} and i3 = tr.{3,t} in if cond i1 then ( if cond i2 then if cond i3 then kd := max4 !kd (abs(i1 - i2)) (abs(i2 -i3)) (abs(i3 - i1)) else (* exlude i3 *) kd := max2 !kd (abs(i2 - i1)) else (* exclude i2 *) if cond i3 then kd := max2 !kd (abs(i3 - i1)) ) else (* exclude i1 *) if cond i2 && cond i3 then kd := max2 !kd (abs(i3 - i2)) done; !kd + 1 (* Return the index with the lowest nonnegative [deg] (negative degrees are ignored). Return [-1] if all degrees are < 0. *) let min_deg (deg: int array) = let i = ref(-1) in let degi = ref(max_int) in for j = 1 to Array.length deg - 1 do if deg.(j) >= 0 && deg.(j) < !degi then (i := j; degi := deg.(j)) done; !i (* sub ***********************************************************************) (* Iterator with indices adapted to the current layout. *) let rec iteri f i = function | [] -> () | x :: tl -> f i x; iteri f (succ i) tl let iteri f l = iteri f 1 l let filter_columns_shift (m: int_mat) select shift = let cols = ref [] in let nselected = ref 0 in (* length of [cols] *) for c = 1 to Array2.dim2(m) do if select m c then (cols := c :: !cols; incr nselected) done; let cols = List.rev !cols in let m' = Array2.create (int) fortran_layout (Array2.dim1(m)) (!nselected) in iteri (fun i pi -> for j = 1 to Array2.dim1(m') do m'.{j,i} <- m.{j,pi} - shift done ) cols; m', !nselected, cols let sub_markers (v: int_vec) n cols = if Array1.dim v = 0 then v (* no markers *) else ( let v' = Array1.create (int) fortran_layout (n) in iteri (fun i pi -> v'.{i} <- v.{pi}) cols; v' ) let internal_sub (mesh: fortran_layout #t) ?pos len = let pos = match pos with | None -> 1 | Some pos -> if pos < 1 then invalid_arg "Mesh.sub: pos < 1"; pos in if len <= 0 then invalid_arg "Mesh.sub: len <= 0"; if pos + len > Array2.dim2(mesh#point) then invalid_arg "Mesh.sub: len too large"; let shift = pos - 1 in let max_point_idx = pos + len - 1 in let sub_point i = pos <= i && i <= max_point_idx in (* Points *) let point = Array2.sub_right mesh#point pos len in let point_marker = Array1.sub mesh#point_marker pos len in (* Segments *) let select2 (m: int_mat) i = sub_point m.{1,i} && sub_point m.{2,i} in let new_seg, n, cols = filter_columns_shift mesh#segment select2 shift in let new_seg_marker = sub_markers mesh#segment_marker n cols in (* Triangles *) let select3 (m: int_mat) t = sub_point m.{1,t} && sub_point m.{2,t} && sub_point m.{3,t} in let new_tr, n_tr, cols_tr = filter_columns_shift mesh#triangle select3 shift in (* Neighbors corresponding to the selected triangles. *) let new_neighbor = let old_nbh = mesh#neighbor in if Array2.dim2(old_nbh) = 0 then old_nbh else ( let nbh = Array2.create (int) fortran_layout (3) (n_tr) in (* new neighbor *) let trans = Array1.create (int) fortran_layout (Array2.dim2(mesh#triangle)) in (* old idx → new *) Array1.fill trans (-1); (* default: no corresponding index *) iteri (fun i pi -> trans.{pi} <- i) cols_tr; iteri (fun i pi -> nbh.{1,i} <- trans.{old_nbh.{1,pi}}; nbh.{2,i} <- trans.{old_nbh.{2,pi}}; nbh.{3,i} <- trans.{old_nbh.{3,pi}}; ) cols_tr; nbh ) in (* Edges *) let new_edge, n, cols = filter_columns_shift mesh#edge select2 shift in let new_edge_marker = sub_markers mesh#edge_marker n cols in (make_mesh ~point: point ~point_marker: point_marker ~segment: new_seg ~segment_marker: new_seg_marker ~hole: mesh#hole (* keep *) ~region: mesh#region (* keep *) ~triangle: new_tr ~neighbor: new_neighbor ~edge: new_edge ~edge_marker: new_edge_marker, n_tr, cols_tr) let sub (mesh: mesh) ?pos len = let m, _, _ = internal_sub mesh ?pos len in m (* Permutations ***********************************************************************) (** Apply the permutation [perm] to the [mesh]. *) let do_permute_points name (mesh: mesh) (perm: int_vec) (inv_perm: int_vec) : mesh = (* Build the new mesh *) let old_pt = mesh#point in let n = Array2.dim2(old_pt) in if n <> Array1.dim perm then invalid_arg(sprintf "%s: dim2 #point = %i <> dim perm = %i" name n (Array1.dim perm)); let pt = Array2.create (float64) fortran_layout (2) (n) in let last_pt_idx = Array2.dim2(pt) in for i = 1 to last_pt_idx do let old_i = perm.{i} in pt.{1,i} <- old_pt.{1,old_i}; pt.{2,i} <- old_pt.{2,old_i}; done; let old_ptm = mesh#point_marker in let ptm = Array1.create int layout (Array1.dim old_ptm) in for i = 1 to Array1.dim(ptm) do ptm.{i} <- old_ptm.{perm.{i}} done; let old_seg = mesh#segment in let seg = Array2.create (int) fortran_layout (2) (Array2.dim2(old_seg)) in for s = 1 to Array2.dim2(seg) do let i1 = old_seg.{1,s} in if i1 < 1 || i1 > last_pt_idx then failwith(sprintf "%s: mesh#segment.{%i} = %i not in [%i..%i]" name s i1 1 last_pt_idx); seg.{1,s} <- inv_perm.{i1}; let i2 = old_seg.{2,s} in if i2 < 1 || i2 > last_pt_idx then failwith(sprintf "%s: mesh#segment.{%i} = %i not in [%i..%i]" name s i2 1 last_pt_idx); seg.{2,s} <- inv_perm.{i2}; done; let old_tr = mesh#triangle in let tr = Array2.create (int) fortran_layout (Array2.dim1(old_tr)) (Array2.dim2(old_tr)) in for t = 1 to Array2.dim2(tr) do for c = 1 to Array2.dim1(tr) do tr.{c,t} <- inv_perm.{old_tr.{c,t}} done; done; let old_edge = mesh#edge in let edge = Array2.create (int) fortran_layout (2) (Array2.dim2(old_edge)) in for e = 1 to Array2.dim2(edge) do edge.{1,e} <- inv_perm.{old_edge.{1,e}}; edge.{2,e} <- inv_perm.{old_edge.{2,e}}; done; make_mesh ~point: pt ~point_marker: ptm ~segment: seg ~segment_marker: mesh#segment_marker ~hole: mesh#hole ~region: mesh#region ~triangle: tr ~neighbor: mesh#neighbor ~edge: edge ~edge_marker: mesh#edge_marker let permute_points_name = "Mesh.permute_points" let permute_points_unsafe mesh perm = let n = Array2.dim2(mesh#point) in (* Inverse perm *) let inv_perm = Array1.create int layout n in for i = 1 to Array1.dim(perm) do inv_perm.{perm.{i}} <- i done; do_permute_points permute_points_name mesh perm inv_perm let inverse_perm name (perm: int_vec) = (* Inverse perm and check that [perm] is indeed a permuation. *) let inv_perm = Array1.create int layout (Array1.dim perm) in Array1.fill inv_perm (-1); (* never an index *) let last_el = Array1.dim(perm) in for i = 1 to last_el do let pi = perm.{i} in if pi < 1 || pi > last_el then invalid_arg(sprintf "%s: perm.{%i} = %i not in [%i..%i]" name i pi 1 last_el) else if inv_perm.{pi} < 0 then inv_perm.{pi} <- i else invalid_arg(sprintf "%s: not a permutation (perm.{%i} = %i = \ perm.{%i})" name inv_perm.{pi} pi i) done; inv_perm let permute_points (mesh: mesh) ~inv perm = let inv_perm = inverse_perm permute_points_name perm in if inv then do_permute_points permute_points_name mesh inv_perm perm else do_permute_points permute_points_name mesh perm inv_perm let do_permute_triangles name (mesh: mesh) (perm: int_vec) = let old_tr = mesh#triangle in let n = Array2.dim2(old_tr) in if n <> Array1.dim perm then invalid_arg(sprintf "%s: dim2 #triangle = %i <> dim perm = %i" name n (Array1.dim perm)); let tr = Array2.create (int) fortran_layout (Array2.dim1(old_tr)) (n) in let last_tr_idx = Array2.dim2(tr) in for i = 1 to last_tr_idx do for j = 1 to Array2.dim1(tr) do tr.{j,i} <- old_tr.{j,perm.{i}} done done; let old_nbh = mesh#neighbor in let nbh = if Array2.dim2(old_nbh) = 0 then old_nbh else ( if Array2.dim1(old_nbh) <> 3 then invalid_arg(sprintf "%s: invalid mesh: ROW #neighbor <> 3" name); if n <> Array2.dim2(old_nbh) then invalid_arg(sprintf "%s: invalid mesh: COL #neighbor = %i <> \ COL #triangle = %i" name (Array2.dim2(old_nbh)) n); let nbh = Array2.create (int) fortran_layout (3) (n) in for i = 1 to last_tr_idx do let old_i = perm.{i} in nbh.{1,i} <- old_nbh.{1,old_i}; nbh.{2,i} <- old_nbh.{2,old_i}; nbh.{3,i} <- old_nbh.{3,old_i}; done; nbh ) in make_mesh ~point: mesh#point ~point_marker: mesh#point_marker ~segment: mesh#segment ~segment_marker: mesh#segment_marker ~hole: mesh#hole ~region: mesh#region ~triangle: tr ~neighbor: nbh ~edge: mesh#edge ~edge_marker: mesh#edge_marker let permute_triangles_name = "Mesh.permute_triangles" let permute_triangles (mesh: mesh) ~inv perm = let inv_perm = inverse_perm permute_triangles_name perm in if inv then do_permute_triangles permute_triangles_name mesh inv_perm else do_permute_triangles permute_triangles_name mesh perm (* Band ***********************************************************************) (* http://ciprian-zavoianu.blogspot.com/2009/01/project-bandwidth-reduction.html *) let cuthill_mckee ~rev perm (mesh: mesh) : mesh = let n = Array2.dim2(mesh#point) in let perm = match perm with | None -> Array1.create int layout n | Some p -> if Array1.dim p <> n then invalid_arg "Mesh.cuthill_mckee: dim perm <> number of points"; p in let deg = Array.make (n + 1) 0 in (* degree of adjacency of each node *) let nbh = Array.make (n + 1) [] in (* list of adjacent nodes *) let edge = mesh#edge in for e = 1 to Array2.dim2(edge) do let i1 = edge.{1,e} and i2 = edge.{2,e} in nbh.(i1) <- i2 :: nbh.(i1); deg.(i1) <- deg.(i1) + 1; nbh.(i2) <- i1 :: nbh.(i2); deg.(i2) <- deg.(i2) + 1; done; let free = ref(1) in (* first free position in [perm] *) let q = Queue.create () in let add node = perm.{!free} <- node; incr free; deg.(node) <- -1; (* [i] put in the final vec. *) let nbhs = List.filter (fun i -> deg.(i) >= 0) nbh.(node) in let nbhs = List.fast_sort (fun i1 i2 -> compare deg.(i1) deg.(i2)) nbhs in List.iter (fun i -> Queue.add i q) nbhs in let last_pt = Array1.dim(perm) in while !free <= last_pt do add (min_deg deg); while not(Queue.is_empty q) do let c = Queue.take q in if deg.(c) >= 0 then add c done done; if rev then ( let s = if 1 = 0 then n-1 else n+1 in (* FIXME: cond known at compil. *) for i = 1 to n/2 -1 + 1 do let t = perm.{i} in perm.{i} <- perm.{s-i}; perm.{s-i} <- t; done ); permute_points_unsafe mesh perm (* A Generalized GPS Algorithm For Reducing The Bandwidth And Profile Of A Sparse Matrix, Q. Wang, Y. C. Guo, and X. W. Shi http://www.jpier.org/PIER/pier90/09.09010512.pdf *) let ggps (mesh: mesh) perm : mesh = let n = Array2.dim2(mesh#point) in let perm = match perm with | None -> Array1.create int layout n | Some p -> if Array1.dim p <> n then invalid_arg "Mesh.ggps: dim perm <> number of points"; p in let deg = Array.make (n + 1) 0 in (* degree of adjacency of each node *) let edge = mesh#edge in for e = 1 to Array2.dim2(edge) do let i1 = edge.{1,e} and i2 = edge.{2,e} in deg.(i1) <- deg.(i1) + 1; deg.(i2) <- deg.(i2) + 1; done; let _v = min_deg deg in (* FIXME *) permute_points_unsafe mesh perm (* Local Variables: *) (* compile-command: "make -k -C .." *) (* End: *)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>