Source file flow_map.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
type ('k, 'v) t0 =
| Empty
| Leaf of {
v: 'k;
d: 'v;
}
| Node of {
h: int;
v: 'k;
d: 'v;
l: ('k, 'v) t0;
r: ('k, 'v) t0;
}
type ('k, 'v) partial_node = {
h: int;
v: 'k;
d: 'v;
l: ('k, 'v) t0;
r: ('k, 'v) t0;
}
type ('k, 'v) leaf_tuple = 'k * 'v
external ( ~!! ) : ('k, 'v) t0 -> ('k, 'v) leaf_tuple = "%identity"
external ( ~! ) : ('k, 'v) t0 -> ('k, 'v) partial_node = "%identity"
let[@inline] height = function
| Empty -> 0
| Leaf _ -> 1
| Node { h; _ } -> h
let singleton x d = Leaf { v = x; d }
let sorted_two_nodes_larger node v d = Node { l = node; v; d; r = Empty; h = 2 }
let sorted_two_nodes_smaller v d node = Node { l = Empty; v; d; r = node; h = 2 }
let create l x d r =
let hl = height l in
let hr = height r in
let h =
if hl >= hr then
hl + 1
else
hr + 1
in
if h = 1 then
singleton x d
else
Node { l; v = x; d; r; h }
let rec of_increasing_iterator_unchecked f = function
| 0 -> Empty
| 1 ->
let (v, d) = f () in
Leaf { v; d }
| n ->
let lenl = n lsr 1 in
let lenr = n - lenl - 1 in
let l = of_increasing_iterator_unchecked f lenl in
let (v, d) = f () in
let r = of_increasing_iterator_unchecked f lenr in
Node { l; v; d; r; h = height l + 1 }
let of_sorted_array_unchecked xs =
let len = Array.length xs in
let i = ref 0 in
let f () =
let x = xs.(!i) in
incr i;
x
in
of_increasing_iterator_unchecked f len
let node l x d r =
let hl = height l in
let hr = height r in
let h =
if hl >= hr then
hl + 1
else
hr + 1
in
Node { l; v = x; d; r; h }
let bal l x d r =
let hl = height l in
let hr = height r in
if hl > hr + 2 then
let { l = ll; v = lv; d = ld; r = lr; _ } = ~!l in
if height ll >= height lr then
node ll lv ld (create lr x d r)
else
let { l = lrl; v = lrv; d = lrd; r = lrr; _ } = ~!lr in
node (create ll lv ld lrl) lrv lrd (create lrr x d r)
else if hr > hl + 2 then
let { l = rl; v = rv; d = rd; r = rr; _ } = ~!r in
if height rr >= height rl then
node (create l x d rl) rv rd rr
else
let { l = rll; v = rlv; d = rld; r = rlr; _ } = ~!rl in
node (create l x d rll) rlv rld (create rlr rv rd rr)
else
create l x d r
let empty = Empty
let[@inline] is_empty = function
| Empty -> true
| _ -> false
type ('key, 'a) enumeration =
| End
| More of 'key * 'a * ('key, 'a) t0 * ('key, 'a) enumeration
let rec cons_enum m e =
match m with
| Empty -> e
| Leaf { v; d } -> More (v, d, empty, e)
| Node { l; v; d; r; _ } -> cons_enum l (More (v, d, r, e))
let rec min_binding tree =
match tree with
| Empty -> raise Not_found
| Leaf _ -> ~!!tree
| Node { l = Empty; v; d; _ } -> (v, d)
| Node { l; _ } -> min_binding l
let rec min_binding_from_node_unsafe tree =
let { l; v; d; _ } = ~!tree in
match l with
| Empty -> (v, d)
| Leaf _ -> ~!!l
| Node _ -> min_binding_from_node_unsafe l
let rec min_binding_opt tree =
match tree with
| Empty -> None
| Leaf { v; d } -> Some (v, d)
| Node { l = Empty; v; d; _ } -> Some (v, d)
| Node { l; _ } -> min_binding_opt l
let rec max_binding tree =
match tree with
| Empty -> raise Not_found
| Leaf _ -> ~!!tree
| Node { v; d; r = Empty; _ } -> (v, d)
| Node { r; _ } -> max_binding r
let rec max_binding_opt tree =
match tree with
| Empty -> None
| Leaf { v; d } -> Some (v, d)
| Node { v; d; r = Empty; _ } -> Some (v, d)
| Node { r; _ } -> max_binding_opt r
let rec remove_min_binding_from_node_unsafe tree =
let { l; v; d; r; _ } = ~!tree in
match l with
| Empty -> r
| Leaf _ -> bal Empty v d r
| Node _ -> bal (remove_min_binding_from_node_unsafe l) v d r
let rec add_min_node node tree =
match tree with
| Empty -> node
| Leaf { v; d } -> sorted_two_nodes_larger node v d
| Node { l; v; d; r; _ } -> bal (add_min_node node l) v d r
let rec add_min_binding k x tree =
match tree with
| Empty -> singleton k x
| Leaf _ -> sorted_two_nodes_smaller k x tree
| Node { l; v; d; r; _ } -> bal (add_min_binding k x l) v d r
let rec add_max_node node tree =
match tree with
| Empty -> node
| Leaf { v; d; _ } -> sorted_two_nodes_smaller v d node
| Node { l; v; d; r; _ } -> bal l v d (add_max_node node r)
let rec add_max_binding k x tree =
match tree with
| Empty -> singleton k x
| Leaf _ -> sorted_two_nodes_larger tree k x
| Node { l; v; d; r; _ } -> bal l v d (add_max_binding k x r)
let internal_merge t1 t2 =
match (t1, t2) with
| (Empty, t) -> t
| (t, Empty) -> t
| (Leaf _, t) -> add_min_node t1 t
| (t, Leaf _) -> add_max_node t2 t
| (Node _, Node _) ->
let (x, d) = min_binding_from_node_unsafe t2 in
bal t1 x d (remove_min_binding_from_node_unsafe t2)
let rec join l v d r =
match (l, r) with
| (Empty, _) -> add_min_binding v d r
| (_, Empty) -> add_max_binding v d l
| (Leaf _, Leaf _) -> Node { l; v; d; r; h = 2 }
| (Leaf _, Node { l = rl; v = rv; d = rd; r = rr; h = rh }) ->
if rh > 3 then
bal (join l v d rl) rv rd rr
else
create l v d r
| (Node { l = ll; v = lv; d = ld; r = lr; h = lh }, Leaf _) ->
if lh > 3 then
bal ll lv ld (join lr v d r)
else
create l v d r
| ( Node { l = ll; v = lv; d = ld; r = lr; h = lh },
Node { l = rl; v = rv; d = rd; r = rr; h = rh }
) ->
if lh > rh + 2 then
bal ll lv ld (join lr v d r)
else if rh > lh + 2 then
bal (join l v d rl) rv rd rr
else
create l v d r
let concat t1 t2 =
match (t1, t2) with
| (Empty, t) -> t
| (t, Empty) -> t
| (Leaf _, t) -> add_min_node t1 t
| (t, Leaf _) -> add_max_node t2 t
| (Node _, Node _) ->
let (x, d) = min_binding_from_node_unsafe t2 in
join t1 x d (remove_min_binding_from_node_unsafe t2)
let concat_or_join t1 v d t2 =
match d with
| Some d -> join t1 v d t2
| None -> concat t1 t2
let rec iter f = function
| Empty -> ()
| Leaf { v; d } -> f v d
| Node { l; v; d; r; _ } ->
iter f l;
f v d;
iter f r
let rec map f = function
| Empty -> Empty
| Leaf { v; d } ->
let d' = f d in
Leaf { v; d = d' }
| Node { l; v; d; r; h } ->
let l' = map f l in
let d' = f d in
let r' = map f r in
Node { l = l'; v; d = d'; r = r'; h }
let rec mapi f = function
| Empty -> Empty
| Leaf { v; d } ->
let d' = f v d in
Leaf { v; d = d' }
| Node { l; v; d; r; h } ->
let l' = mapi f l in
let d' = f v d in
let r' = mapi f r in
Node { l = l'; v; d = d'; r = r'; h }
let rec fold f m accu =
match m with
| Empty -> accu
| Leaf { v; d } -> f v d accu
| Node { l; v; d; r; _ } -> fold f r (f v d (fold f l accu))
let rec keys_aux accu tree =
match tree with
| Empty -> accu
| Leaf { v; _ } -> v :: accu
| Node { l; v; r; _ } -> keys_aux (v :: keys_aux accu r) l
let keys s = keys_aux [] s
let ordered_keys = keys
let rec for_all p = function
| Empty -> true
| Leaf { v; d } -> p v d
| Node { l; v; d; r; _ } -> p v d && for_all p l && for_all p r
let rec exists p = function
| Empty -> false
| Leaf { v; d } -> p v d
| Node { l; v; d; r; _ } -> p v d || exists p l || exists p r
let rec filter p tree =
match tree with
| Empty -> Empty
| Leaf { v; d } ->
if p v d then
tree
else
empty
| Node { l; v; d; r; _ } as m ->
let l' = filter p l in
let pvd = p v d in
let r' = filter p r in
if pvd then
if l == l' && r == r' then
m
else
join l' v d r'
else
concat l' r'
let rec cardinal = function
| Empty -> 0
| Leaf _ -> 1
| Node { l; r; _ } -> cardinal l + 1 + cardinal r
let rec bindings_aux accu tree =
match tree with
| Empty -> accu
| Leaf _ -> ~!!tree :: accu
| Node { l; v; d; r; _ } -> bindings_aux ((v, d) :: bindings_aux accu r) l
let bindings s = bindings_aux [] s
type ('k, 'v) t1 = ('k, 'v) t0 =
| Empty
| Leaf of {
v: 'k;
d: 'v;
}
| Node of {
h: int;
v: 'k;
d: 'v;
l: ('k, 'v) t0;
r: ('k, 'v) t0;
}
module type OrderedType = sig
type t
val compare : t -> t -> int
end
module type S = sig
type key
type +'a t
val empty : 'a t
val is_empty : 'a t -> bool
val mem : key -> 'a t -> bool
val add : key -> 'a -> 'a t -> 'a t
val update : key -> ('a option -> 'a option) -> 'a t -> 'a t
val adjust : key -> ('a option -> 'a) -> 'a t -> 'a t
val singleton : key -> 'a -> 'a t
val remove : key -> 'a t -> 'a t
val merge : (key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
val union : (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
val compare : ('a -> 'a -> int) -> 'a t -> 'a t -> int
val equal : ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val for_all : (key -> 'a -> bool) -> 'a t -> bool
val exists : (key -> 'a -> bool) -> 'a t -> bool
val filter : (key -> 'a -> bool) -> 'a t -> 'a t
val partition : (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
val cardinal : 'a t -> int
val bindings : 'a t -> (key * 'a) list
val min_binding : 'a t -> key * 'a
val min_binding_opt : 'a t -> (key * 'a) option
val max_binding : 'a t -> key * 'a
val max_binding_opt : 'a t -> (key * 'a) option
val keys : 'a t -> key list
val ordered_keys : 'a t -> key list
val ident_map_key : ?combine:('a -> 'a -> 'a) -> (key -> key) -> 'a t -> 'a t
val choose : 'a t -> key * 'a
val choose_opt : 'a t -> (key * 'a) option
val split : key -> 'a t -> 'a t * 'a option * 'a t
val find : key -> 'a t -> 'a
val find_opt : key -> 'a t -> 'a option
val map : ('a -> 'b) -> 'a t -> 'b t
val mapi : (key -> 'a -> 'b) -> 'a t -> 'b t
val of_increasing_iterator_unchecked : (unit -> key * 'a) -> int -> 'a t
val of_sorted_array_unchecked : (key * 'a) array -> 'a t
end
module Make (Ord : OrderedType) : S with type key = Ord.t = struct
type key = Ord.t
type 'a t = (key, 'a) t1
let rec add x data m =
match m with
| Empty -> singleton x data
| Leaf { v; d } ->
let c = Ord.compare x v in
if c = 0 then
if d == data then
m
else
Leaf { v; d = data }
else if c < 0 then
sorted_two_nodes_smaller x data m
else
sorted_two_nodes_larger m x data
| Node { l; v; d; r; h } as m ->
let c = Ord.compare x v in
if c = 0 then
if d == data then
m
else
Node { l; v = x; d = data; r; h }
else if c < 0 then
let ll = add x data l in
if l == ll then
m
else
bal ll v d r
else
let rr = add x data r in
if r == rr then
m
else
bal l v d rr
let rec find x = function
| Empty -> raise Not_found
| Leaf { v; d } ->
let c = Ord.compare x v in
if c = 0 then
d
else
raise Not_found
| Node { l; v; d; r; _ } ->
let c = Ord.compare x v in
if c = 0 then
d
else
find
x
( if c < 0 then
l
else
r
)
let rec find_opt x = function
| Empty -> None
| Leaf { v; d } ->
let c = Ord.compare x v in
if c = 0 then
Some d
else
None
| Node { l; v; d; r; _ } ->
let c = Ord.compare x v in
if c = 0 then
Some d
else
find_opt
x
( if c < 0 then
l
else
r
)
let rec mem x = function
| Empty -> false
| Leaf { v; _ } -> Ord.compare x v = 0
| Node { l; v; r; _ } ->
let c = Ord.compare x v in
c = 0
|| mem
x
( if c < 0 then
l
else
r
)
let rec remove x tree =
match tree with
| Empty -> tree
| Leaf { v; _ } ->
let c = Ord.compare x v in
if c = 0 then
empty
else
tree
| Node { l; v; d; r; _ } as m ->
let c = Ord.compare x v in
if c = 0 then
internal_merge l r
else if c < 0 then
let ll = remove x l in
if l == ll then
m
else
bal ll v d r
else
let rr = remove x r in
if r == rr then
m
else
bal l v d rr
let rec adjust x (f : 'a option -> 'a) tree =
match tree with
| Empty ->
let data = f None in
singleton x data
| Leaf { v; d } ->
let c = Ord.compare x v in
if c = 0 then
let data = f (Some d) in
if d == data then
tree
else
Leaf { v; d = data }
else
let data = f None in
if c < 0 then
sorted_two_nodes_smaller x data tree
else
sorted_two_nodes_larger tree x data
| Node { l; v; d; r; h } as m ->
let c = Ord.compare x v in
if c = 0 then
let data = f (Some d) in
if d == data then
m
else
Node { l; v = x; d = data; r; h }
else if c < 0 then
let ll = adjust x f l in
if l == ll then
m
else
bal ll v d r
else
let rr = adjust x f r in
if r == rr then
m
else
bal l v d rr
let rec update x f tree =
match tree with
| Empty -> begin
match f None with
| None -> Empty
| Some data -> singleton x data
end
| Leaf { v; d } ->
let c = Ord.compare x v in
if c = 0 then
match f (Some d) with
| None -> empty
| Some data ->
if d == data then
tree
else
Leaf { v; d = data }
else begin
match f None with
| None -> tree
| Some data ->
if c < 0 then
sorted_two_nodes_smaller x data tree
else
sorted_two_nodes_larger tree x data
end
| Node { l; v; d; r; h } as m ->
let c = Ord.compare x v in
if c = 0 then
match f (Some d) with
| None -> internal_merge l r
| Some data ->
if d == data then
m
else
Node { l; v = x; d = data; r; h }
else if c < 0 then
let ll = update x f l in
if l == ll then
m
else
bal ll v d r
else
let rr = update x f r in
if r == rr then
m
else
bal l v d rr
let rec split x tree =
match tree with
| Empty -> (Empty, None, Empty)
| Leaf { v; d } ->
let c = Ord.compare x v in
if c = 0 then
(empty, Some d, empty)
else if c < 0 then
(empty, None, tree)
else
(tree, None, empty)
| Node { l; v; d; r; _ } ->
let c = Ord.compare x v in
if c = 0 then
(l, Some d, r)
else if c < 0 then
let (ll, pres, rl) = split x l in
(ll, pres, join rl v d r)
else
let (lr, pres, rr) = split x r in
(join l v d lr, pres, rr)
let rec merge f s1 s2 =
match (s1, s2) with
| (Empty, Empty) -> Empty
| (Leaf { v; d }, Empty) -> begin
match f v (Some d) None with
| None -> empty
| Some data -> Leaf { v; d = data }
end
| (Empty, Leaf { v; d }) -> begin
match f v None (Some d) with
| None -> empty
| Some data -> Leaf { v; d = data }
end
| (Leaf { v = v1; d = d1 }, Leaf _) ->
let (l2, d2, r2) = split v1 s2 in
concat_or_join (merge f empty l2) v1 (f v1 (Some d1) d2) (merge f empty r2)
| (Node { l = l1; v = v1; d = d1; r = r1; h = h1 }, _) when h1 >= height s2 ->
let (l2, d2, r2) = split v1 s2 in
concat_or_join (merge f l1 l2) v1 (f v1 (Some d1) d2) (merge f r1 r2)
| (_, Node { l = l2; v = v2; d = d2; r = r2; _ }) ->
let (l1, d1, r1) = split v2 s1 in
concat_or_join (merge f l1 l2) v2 (f v2 d1 (Some d2)) (merge f r1 r2)
| (Node _, (Empty | Leaf _)) -> assert false
let rec union f s1 s2 =
match (s1, s2) with
| (Empty, s)
| (s, Empty) ->
s
| (s, Leaf { v; d }) ->
update
v
(fun d2 ->
match d2 with
| None -> Some d
| Some d2 -> f v d2 d)
s
| (Leaf { v; d }, s) ->
update
v
(fun d2 ->
match d2 with
| None -> Some d
| Some d2 -> f v d d2)
s
| ( Node { l = l1; v = v1; d = d1; r = r1; h = h1 },
Node { l = l2; v = v2; d = d2; r = r2; h = h2 }
) ->
if h1 >= h2 then
let (l2, d2, r2) = split v1 s2 in
let l = union f l1 l2 and r = union f r1 r2 in
match d2 with
| None -> join l v1 d1 r
| Some d2 -> concat_or_join l v1 (f v1 d1 d2) r
else
let (l1, d1, r1) = split v2 s1 in
let l = union f l1 l2 and r = union f r1 r2 in
(match d1 with
| None -> join l v2 d2 r
| Some d1 -> concat_or_join l v2 (f v2 d1 d2) r)
let rec partition p tree =
match tree with
| Empty -> (Empty, Empty)
| Leaf { v; d } ->
if p v d then
(tree, empty)
else
(empty, tree)
| Node { l; v; d; r; _ } ->
let (lt, lf) = partition p l in
let pvd = p v d in
let (rt, rf) = partition p r in
if pvd then
(join lt v d rt, concat lf rf)
else
(concat lt rt, join lf v d rf)
let compare cmp m1 m2 =
let rec compare_aux e1 e2 =
match (e1, e2) with
| (End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More (v1, d1, r1, e1), More (v2, d2, r2, e2)) ->
let c = Ord.compare v1 v2 in
if c <> 0 then
c
else
let c = cmp d1 d2 in
if c <> 0 then
c
else
compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
in
compare_aux (cons_enum m1 End) (cons_enum m2 End)
let equal cmp m1 m2 =
let rec equal_aux e1 e2 =
match (e1, e2) with
| (End, End) -> true
| (End, _) -> false
| (_, End) -> false
| (More (v1, d1, r1, e1), More (v2, d2, r2, e2)) ->
Ord.compare v1 v2 = 0 && cmp d1 d2 && equal_aux (cons_enum r1 e1) (cons_enum r2 e2)
in
equal_aux (cons_enum m1 End) (cons_enum m2 End)
let cardinal = cardinal
let bindings = bindings
let keys = keys
let choose = min_binding
let choose_opt = min_binding_opt
let empty = empty
let singleton = singleton
let is_empty = is_empty
let min_binding = min_binding
let min_binding_opt = min_binding_opt
let max_binding = max_binding
let max_binding_opt = max_binding_opt
let fold = fold
let iter = iter
let for_all = for_all
let exists = exists
let mapi = mapi
let map = map
let filter = filter
let ordered_keys = keys
let of_increasing_iterator_unchecked = of_increasing_iterator_unchecked
let of_sorted_array_unchecked = of_sorted_array_unchecked
let ident_map_key ?combine f map =
let (map_, changed) =
fold
(fun key item (map_, changed) ->
let new_key = f key in
(
(match combine with
| None -> add new_key item map_
| Some combine ->
adjust
new_key
(fun opt ->
match opt with
| None -> item
| Some old_value -> combine old_value item)
map_),
changed || new_key != key
))
map
(empty, false)
in
if changed then
map_
else
map
end