package melange

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file flow_set.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
(* Portions Copyright (c) Meta Platforms, Inc. and affiliates. *)

(***********************************************************************
 *                                                                     *
 *                           Objective Caml                            *
 *                                                                     *
 *            Xavier Leroy, projet Cristal, INRIA Rocquencourt         *
 *                                                                     *
 *  Copyright 1996 Institut National de Recherche en Informatique et   *
 *  en Automatique.  All rights reserved.  This file is distributed    *
 *  under the terms of the GNU Library General Public License, with    *
 *  the special exception on linking described in file LICENSE.        *
 *                                                                     *
 ***********************************************************************)

(* This module has been inspired from the OCaml standard library.
 * There are some modifications to make it run fast.
 * - It adds a Leaf node to avoid excessive allocation for singleton set
 * - In the hot [bal] function when we we know it has to be [Node], we do
 *   an unsafe cast to avoid some unneeded tests
 * - Functions not need comparison functions are lifted outside functors
 * - We can add more utilities relying on the internals in the future
 *)

module type OrderedType = sig
  type t

  val compare : t -> t -> int
end

module type S = sig
  type elt

  type t

  val empty : t

  val is_empty : t -> bool

  val mem : elt -> t -> bool

  val add : elt -> t -> t

  val singleton : elt -> t

  val remove : elt -> t -> t

  val union : t -> t -> t

  val inter : t -> t -> t

  val disjoint : t -> t -> bool

  val diff : t -> t -> t

  val compare : t -> t -> int

  val equal : t -> t -> bool

  val subset : t -> t -> bool

  val iter : (elt -> unit) -> t -> unit

  val map : (elt -> elt) -> t -> t

  val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a

  val for_all : (elt -> bool) -> t -> bool

  val exists : (elt -> bool) -> t -> bool

  val filter : (elt -> bool) -> t -> t

  val partition : (elt -> bool) -> t -> t * t

  val cardinal : t -> int

  val elements : t -> elt list

  val min_elt : t -> elt

  val min_elt_opt : t -> elt option

  val max_elt : t -> elt

  val max_elt_opt : t -> elt option

  val choose : t -> elt

  val choose_opt : t -> elt option

  val find : elt -> t -> elt

  val find_opt : elt -> t -> elt option

  val to_seq : t -> elt Seq.t

  val of_list : elt list -> t

  val make_pp : (Format.formatter -> elt -> unit) -> Format.formatter -> t -> unit

  val of_increasing_iterator_unchecked : (unit -> elt) -> int -> t

  val of_sorted_array_unchecked : elt array -> t

  val find_first_opt : (elt -> bool) -> t -> elt option
end

type 'elt t0 =
  | Empty
  | Leaf of 'elt
  | Node of {
      h: int;
      v: 'elt;
      l: 'elt t0;
      r: 'elt t0;
    }

type 'elt partial_node = {
  h: int;
  v: 'elt;
  l: 'elt t0;
  r: 'elt t0;
}

external ( ~! ) : 'elt t0 -> 'elt partial_node = "%identity"

type ('elt, 't) enumeration0 =
  | End
  | More of 'elt * 't * ('elt, 't) enumeration0

let rec cons_enum s e =
  match s with
  | Empty -> e
  | Leaf v -> More (v, Empty, e)
  | Node { l; v; r; _ } -> cons_enum l (More (v, r, e))

let rec seq_of_enum_ c () =
  match c with
  | End -> Seq.Nil
  | More (x, t, rest) -> Seq.Cons (x, seq_of_enum_ (cons_enum t rest))

let to_seq c = seq_of_enum_ (cons_enum c End)

let[@inline] height = function
  | Empty -> 0
  | Leaf _ -> 1
  | Node { h; _ } -> h

let[@inline] singleton x = Leaf x

(* FIXME: we should check to avoid creating unneeded Node
   - node
   - Node
   This function produce Node of height at least [1]
*)
let unsafe_node ~l ~v ~r =
  match (l, r) with
  | (Empty, Empty) -> singleton v
  | (Leaf _, Empty)
  | (Leaf _, Leaf _)
  | (Empty, Leaf _) ->
    Node { l; v; r; h = 2 }
  | (Node { h; _ }, (Leaf _ | Empty))
  | ((Leaf _ | Empty), Node { h; _ }) ->
    Node { l; v; r; h = h + 1 }
  | (Node { h = hl; _ }, Node { h = hr; _ }) ->
    let h =
      if hl >= hr then
        hl + 1
      else
        hr + 1
    in
    Node { l; v; r; h }

(* Creates a new node with left son l, value v and right son r.
   We must have all elements of l < v < all elements of r.
   l and r must be balanced and | height l - height r | <= 2.
   Inline expansion of height for better speed. *)

let create l v r =
  let hl = height l in
  let hr = height r in
  Node
    {
      l;
      v;
      r;
      h =
        ( if hl >= hr then
          hl + 1
        else
          hr + 1
        );
    }

let rec of_increasing_iterator_unchecked f = function
  | 0 -> Empty
  | 1 ->
    let v = f () in
    Leaf v
  | n ->
    let lenl = n lsr 1 in
    let lenr = n - lenl - 1 in
    let l = of_increasing_iterator_unchecked f lenl in
    let v = f () in
    let r = of_increasing_iterator_unchecked f lenr in
    Node { l; v; r; h = height l + 1 }

let of_sorted_array_unchecked xs =
  let len = Array.length xs in
  let i = ref 0 in
  let f () =
    let x = xs.(!i) in
    incr i;
    x
  in
  of_increasing_iterator_unchecked f len

(* Same as create, but performs one step of rebalancing if necessary.
   Assumes l and r balanced and | height l - height r | <= 3.
   Inline expansion of create for better speed in the most frequent case
   where no rebalancing is required. *)

let bal l v r =
  let hl = height l in
  let hr = height r in
  if hl > hr + 2 then
    (* hl is at least of height > 2 [3], so it should be [Node]
       Note having in-efficient nodes like [Node (empty,v,empty)] won't affect
       correctness here, since it will be even more likely to be [Node]
       But we are stricter with height
    *)
    let { l = ll; v = lv; r = lr; _ } = ~!l in
    if height ll >= height lr then
      create ll lv (unsafe_node ~l:lr ~v ~r)
    else
      (* Int his path hlr > hll while hl = hlr + 1 so [hlr] > 1, so it should be [Node]*)
      let { l = lrl; v = lrv; r = lrr; _ } = ~!lr in
      create (unsafe_node ~l:ll ~v:lv ~r:lrl) lrv (unsafe_node ~l:lrr ~v ~r)
  else if hr > hl + 2 then
    (* hr is at least of height > 2 [3], so it should be [Node] *)
    let { l = rl; v = rv; r = rr; _ } = ~!r in
    if height rr >= height rl then
      create (unsafe_node ~l ~v ~r:rl) rv rr
    else
      (* In this path hrl > hrr while hr = hrl + 1, so [hrl] > 1, so it should be [Node] *)
      let { l = rll; v = rlv; r = rlr; _ } = ~!rl in
      create (unsafe_node ~l ~v ~r:rll) rlv (unsafe_node ~l:rlr ~v:rv ~r:rr)
  else
    unsafe_node ~l ~v ~r

(* Beware: those two functions assume that the added v is *strictly*
   smaller (or bigger) than all the present elements in the tree; it
   does not test for equality with the current min (or max) element.
   Indeed, they are only used during the "join" operation which
   respects this precondition.
*)

let rec add_min_element x = function
  | Empty -> singleton x
  | Leaf v -> unsafe_node ~l:(singleton x) ~v ~r:Empty
  | Node { l; v; r; _ } -> bal (add_min_element x l) v r

let rec add_max_element x = function
  | Empty -> singleton x
  | Leaf v -> unsafe_node ~l:Empty ~v ~r:(singleton x)
  | Node { l; v; r; _ } -> bal l v (add_max_element x r)

(* Same as create and bal, but no assumptions are made on the
   relative heights of l and r. *)

let rec join l v r =
  match (l, r) with
  | (Empty, _) -> add_min_element v r
  | (_, Empty) -> add_max_element v l
  | (Leaf _, Leaf _) -> unsafe_node ~l ~v ~r
  | (Leaf _, Node { l = rl; v = rv; r = rr; h = rh }) ->
    if rh > 3 then
      bal (join l v rl) rv rr
    else
      create l v r
  | (Node { l = ll; v = lv; r = lr; h = lh }, Leaf _) ->
    if lh > 3 then
      bal ll lv (join lr v r)
    else
      create l v r
  | (Node { l = ll; v = lv; r = lr; h = lh }, Node { l = rl; v = rv; r = rr; h = rh }) ->
    if lh > rh + 2 then
      bal ll lv (join lr v r)
    else if rh > lh + 2 then
      bal (join l v rl) rv rr
    else
      create l v r

(* Smallest and greatest element of a set *)

let rec min_elt = function
  | Empty -> raise Not_found
  | Leaf v -> v
  | Node { l = Empty; v; _ } -> v
  | Node { l; _ } -> min_elt l

let rec min_elt_opt = function
  | Empty -> None
  | Leaf v -> Some v
  | Node { l = Empty; v; _ } -> Some v
  | Node { l; _ } -> min_elt_opt l

let rec max_elt = function
  | Empty -> raise Not_found
  | Node { v; r = Empty; _ } -> v
  | Leaf v -> v
  | Node { r; _ } -> max_elt r

let rec max_elt_opt = function
  | Empty -> None
  | Node { v; r = Empty; _ } -> Some v
  | Leaf v -> Some v
  | Node { r; _ } -> max_elt_opt r

(* Remove the smallest element of the given set *)

let rec remove_min_elt = function
  | Empty -> invalid_arg "Set.remove_min_elt"
  | Leaf _ -> Empty
  | Node { l = Empty; r; _ } -> r
  | Node { l; v; r; _ } -> bal (remove_min_elt l) v r

(* Merge two trees l and r into one.
   All elements of l must precede the elements of r.
   Assume | height l - height r | <= 2. *)

let merge t1 t2 =
  match (t1, t2) with
  | (Empty, t) -> t
  | (t, Empty) -> t
  | (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2)

(* Merge two trees l and r into one.
   All elements of l must precede the elements of r.
   No assumption on the heights of l and r. *)

let concat t1 t2 =
  match (t1, t2) with
  | (Empty, t) -> t
  | (t, Empty) -> t
  | (_, _) -> join t1 (min_elt t2) (remove_min_elt t2)

let rec cardinal = function
  | Empty -> 0
  | Leaf _ -> 1
  | Node { l; r; _ } -> cardinal l + 1 + cardinal r

let rec elements_aux accu = function
  | Empty -> accu
  | Leaf v -> v :: accu
  | Node { l; v; r; _ } -> elements_aux (v :: elements_aux accu r) l

let elements s = elements_aux [] s

let empty = Empty

let[@inline] is_empty = function
  | Empty -> true
  | _ -> false

let of_sorted_list l =
  let rec sub n l =
    match (n, l) with
    | (0, l) -> (Empty, l)
    | (1, x0 :: l) -> (singleton x0, l)
    | (2, x0 :: x1 :: l) -> (Node { l = singleton x0; v = x1; r = Empty; h = 2 }, l)
    | (3, x0 :: x1 :: x2 :: l) -> (Node { l = singleton x0; v = x1; r = singleton x2; h = 2 }, l)
    | (n, l) ->
      let nl = n / 2 in
      let (left, l) = sub nl l in
      (match l with
      | [] -> assert false
      | mid :: l ->
        let (right, l) = sub (n - nl - 1) l in
        (create left mid right, l))
  in
  fst (sub (List.length l) l)

type 'a t1 = 'a t0 = private
  | Empty
  | Leaf of 'a
  | Node of {
      h: int;
      v: 'a;
      l: 'a t0;
      r: 'a t0;
    }

module Make (Ord : OrderedType) : S with type elt = Ord.t = struct
  type elt = Ord.t

  type t = elt t1

  let singleton = singleton

  (* Insertion of one element *)
  let min_elt_opt = min_elt_opt

  let max_elt_opt = max_elt_opt

  let min_elt = min_elt

  let max_elt = max_elt

  let elements = elements

  let cardinal = cardinal

  let is_empty = is_empty

  let empty = empty

  let choose = min_elt

  let choose_opt = min_elt_opt

  let rec add x t =
    match t with
    | Empty -> singleton x
    | Leaf v ->
      let c = Ord.compare x v in
      if c = 0 then
        t
      else if c < 0 then
        unsafe_node ~l:(singleton x) ~v ~r:empty
      else
        unsafe_node ~l:t ~v:x ~r:empty
    | Node { l; v; r; _ } as t ->
      let c = Ord.compare x v in
      if c = 0 then
        t
      else if c < 0 then
        let ll = add x l in
        if l == ll then
          t
        else
          bal ll v r
      else
        let rr = add x r in
        if r == rr then
          t
        else
          bal l v rr

  let ( @> ) = add
  (* Splitting.  split x s returns a triple (l, present, r) where
      - l is the set of elements of s that are < x
      - r is the set of elements of s that are > x
      - present is false if s contains no element equal to x,
        or true if s contains an element equal to x. *)

  let rec split x tree =
    match tree with
    | Empty -> (empty, false, empty)
    | Leaf v ->
      let c = Ord.compare x v in
      if c = 0 then
        (empty, true, empty)
      else if c < 0 then
        (empty, false, tree)
      else
        (tree, false, empty)
    | Node { l; v; r; _ } ->
      let c = Ord.compare x v in
      if c = 0 then
        (l, true, r)
      else if c < 0 then
        let (ll, pres, rl) = split x l in
        (ll, pres, join rl v r)
      else
        let (lr, pres, rr) = split x r in
        (join l v lr, pres, rr)

  (* Implementation of the set operations *)

  let rec mem x = function
    | Empty -> false
    | Leaf v ->
      let c = Ord.compare x v in
      c = 0
    | Node { l; v; r; _ } ->
      let c = Ord.compare x v in
      c = 0
      || mem
           x
           ( if c < 0 then
             l
           else
             r
           )

  let rec remove x tree =
    match tree with
    | Empty -> empty
    | Leaf v ->
      let c = Ord.compare x v in
      if c = 0 then
        empty
      else
        tree
    | Node { l; v; r; _ } as t ->
      let c = Ord.compare x v in
      if c = 0 then
        merge l r
      else if c < 0 then
        let ll = remove x l in
        if l == ll then
          t
        else
          bal ll v r
      else
        let rr = remove x r in
        if r == rr then
          t
        else
          bal l v rr

  let rec union s1 s2 =
    match (s1, s2) with
    | (Empty, t2) -> t2
    | (t1, Empty) -> t1
    | (Leaf v, s2) -> add v s2
    | (s1, Leaf v) -> add v s1
    | (Node { l = l1; v = v1; r = r1; h = h1 }, Node { l = l2; v = v2; r = r2; h = h2 }) ->
      if h1 >= h2 then
        if h2 = 1 then
          add v2 s1
        else
          let (l2, _, r2) = split v1 s2 in
          join (union l1 l2) v1 (union r1 r2)
      else if h1 = 1 then
        add v1 s2
      else
        let (l1, _, r1) = split v2 s1 in
        join (union l1 l2) v2 (union r1 r2)

  let rec inter s1 s2 =
    match (s1, s2) with
    | (Empty, _) -> empty
    | (_, Empty) -> empty
    | (Leaf v, _) ->
      if mem v s2 then
        s1
      else
        empty
    | (Node { l = l1; v = v1; r = r1; _ }, t2) ->
      (match split v1 t2 with
      | (l2, false, r2) -> concat (inter l1 l2) (inter r1 r2)
      | (l2, true, r2) -> join (inter l1 l2) v1 (inter r1 r2))

  (* Same as split, but compute the left and right subtrees
     only if the pivot element is not in the set.  The right subtree
     is computed on demand. *)

  type split_bis =
    | Found
    | NotFound of t * (unit -> t)

  let rec split_bis x = function
    | Empty -> NotFound (empty, (fun () -> empty))
    | Leaf v ->
      let c = Ord.compare x v in
      if c = 0 then
        Found
      else
        NotFound (empty, (fun () -> empty))
    | Node { l; v; r; _ } ->
      let c = Ord.compare x v in
      if c = 0 then
        Found
      else if c < 0 then
        match split_bis x l with
        | Found -> Found
        | NotFound (ll, rl) -> NotFound (ll, (fun () -> join (rl ()) v r))
      else (
        match split_bis x r with
        | Found -> Found
        | NotFound (lr, rr) -> NotFound (join l v lr, rr)
      )

  let rec disjoint s1 s2 =
    match (s1, s2) with
    | (Empty, _)
    | (_, Empty) ->
      true
    | (Leaf v, s)
    | (s, Leaf v) ->
      not (mem v s)
    | (Node { l = l1; v = v1; r = r1; _ }, t2) ->
      if s1 == s2 then
        false
      else (
        match split_bis v1 t2 with
        | NotFound (l2, r2) -> disjoint l1 l2 && disjoint r1 (r2 ())
        | Found -> false
      )

  let rec diff s1 s2 =
    match (s1, s2) with
    | (Empty, _) -> empty
    | (t1, Empty) -> t1
    | (Leaf v, _) ->
      if mem v s2 then
        empty
      else
        s1
    | (Node { l = l1; v = v1; r = r1; _ }, t2) ->
      (match split v1 t2 with
      | (l2, false, r2) -> join (diff l1 l2) v1 (diff r1 r2)
      | (l2, true, r2) -> concat (diff l1 l2) (diff r1 r2))

  let rec compare_aux e1 e2 =
    match (e1, e2) with
    | (End, End) -> 0
    | (End, _) -> -1
    | (_, End) -> 1
    | (More (v1, r1, e1), More (v2, r2, e2)) ->
      let c = Ord.compare v1 v2 in
      if c <> 0 then
        c
      else
        compare_aux (cons_enum r1 e1) (cons_enum r2 e2)

  let compare s1 s2 = compare_aux (cons_enum s1 End) (cons_enum s2 End)

  let equal s1 s2 = compare s1 s2 = 0

  let rec subset s1 s2 =
    match (s1, s2) with
    | (Empty, _) -> true
    | (_, Empty) -> false
    | (Leaf v1, Leaf v2) ->
      let c = Ord.compare v1 v2 in
      if c = 0 then
        true
      else
        false
    | (Node { v = v1; h; _ }, Leaf v2) ->
      h = 1
      && (* conservative here *)
      Ord.compare v1 v2 = 0
    | (Leaf v1, Node { l = l2; v = v2; r = r2; _ }) ->
      let c = Ord.compare v1 v2 in
      if c = 0 then
        true
      else if c < 0 then
        subset s1 l2
      else
        subset s1 r2
    | (Node { l = l1; v = v1; r = r1; _ }, (Node { l = l2; v = v2; r = r2; _ } as t2)) ->
      let c = Ord.compare v1 v2 in
      if c = 0 then
        subset l1 l2 && subset r1 r2
      else if c < 0 then
        (* Better to keep invariant here, since our unsafe code relies on such invariant
         *)
        subset (unsafe_node ~l:l1 ~v:v1 ~r:empty) l2 && subset r1 t2
      else
        subset (unsafe_node ~l:empty ~v:v1 ~r:r1) r2 && subset l1 t2

  let rec iter f = function
    | Empty -> ()
    | Leaf v -> f v
    | Node { l; v; r; _ } ->
      iter f l;
      f v;
      iter f r

  let rec fold f s accu =
    match s with
    | Empty -> accu
    | Leaf v -> f v accu
    | Node { l; v; r; _ } -> fold f r (f v (fold f l accu))

  let rec for_all p = function
    | Empty -> true
    | Leaf v -> p v
    | Node { l; v; r; _ } -> p v && for_all p l && for_all p r

  let rec exists p = function
    | Empty -> false
    | Leaf v -> p v
    | Node { l; v; r; _ } -> p v || exists p l || exists p r

  let rec filter p tree =
    match tree with
    | Empty -> empty
    | Leaf v ->
      let pv = p v in
      if pv then
        tree
      else
        empty
    | Node { l; v; r; _ } as t ->
      (* call [p] in the expected left-to-right order *)
      let l' = filter p l in
      let pv = p v in
      let r' = filter p r in
      if pv then
        if l == l' && r == r' then
          t
        else
          join l' v r'
      else
        concat l' r'

  let rec partition p tree =
    match tree with
    | Empty -> (empty, empty)
    | Leaf v ->
      let pv = p v in
      if pv then
        (tree, empty)
      else
        (empty, tree)
    | Node { l; v; r; _ } ->
      (* call [p] in the expected left-to-right order *)
      let (lt, lf) = partition p l in
      let pv = p v in
      let (rt, rf) = partition p r in
      if pv then
        (join lt v rt, concat lf rf)
      else
        (concat lt rt, join lf v rf)

  let rec find x = function
    | Empty -> raise Not_found
    | Leaf v ->
      let c = Ord.compare x v in
      if c = 0 then
        v
      else
        raise Not_found
    | Node { l; v; r; _ } ->
      let c = Ord.compare x v in
      if c = 0 then
        v
      else
        find
          x
          ( if c < 0 then
            l
          else
            r
          )

  let rec find_opt x = function
    | Empty -> None
    | Leaf v ->
      let c = Ord.compare x v in
      if c = 0 then
        Some v
      else
        None
    | Node { l; v; r; _ } ->
      let c = Ord.compare x v in
      if c = 0 then
        Some v
      else
        find_opt
          x
          ( if c < 0 then
            l
          else
            r
          )

  let try_join l v r =
    (* [join l v r] can only be called when (elements of l < v <
       elements of r); use [try_join l v r] when this property may
       not hold, but you hope it does hold in the common case *)
    if (is_empty l || Ord.compare (max_elt l) v < 0) && (is_empty r || Ord.compare v (min_elt r) < 0)
    then
      join l v r
    else
      union l (add v r)

  let rec map f tree =
    match tree with
    | Empty -> empty
    | Leaf v ->
      let v' = f v in
      if v == v' then
        tree
      else
        singleton v'
    | Node { l; v; r; _ } as t ->
      (* enforce left-to-right evaluation order *)
      let l' = map f l in
      let v' = f v in
      let r' = map f r in
      if l == l' && v == v' && r == r' then
        t
      else
        try_join l' v' r'

  let of_list l =
    match l with
    | [] -> empty
    | [x0] -> singleton x0
    | [x0; x1] -> x1 @> singleton x0
    | [x0; x1; x2] -> x2 @> x1 @> singleton x0
    | [x0; x1; x2; x3] -> x3 @> x2 @> x1 @> singleton x0
    | [x0; x1; x2; x3; x4] -> x4 @> x3 @> x2 @> x1 @> singleton x0
    | _ -> of_sorted_list (List.sort_uniq Ord.compare l)

  let to_seq = to_seq

  let make_pp pp_key fmt iset =
    Format.fprintf fmt "@[<2>{";
    let elements = elements iset in
    (match elements with
    | [] -> ()
    | _ -> Format.fprintf fmt " ");
    ignore
      (List.fold_left
         (fun sep s ->
           if sep then Format.fprintf fmt ";@ ";
           pp_key fmt s;
           true)
         false
         elements
      );
    (match elements with
    | [] -> ()
    | _ -> Format.fprintf fmt " ");
    Format.fprintf fmt "@,}@]"

  let of_increasing_iterator_unchecked = of_increasing_iterator_unchecked

  let of_sorted_array_unchecked = of_sorted_array_unchecked

  let rec find_first_opt_aux v0 f = function
    | Empty -> Some v0
    | Leaf v ->
      if f v then
        Some v
      else
        Some v0
    | Node { l; v; r; _ } ->
      if f v then
        find_first_opt_aux v f l
      else
        find_first_opt_aux v0 f r

  let rec find_first_opt f = function
    | Empty -> None
    | Leaf v ->
      if f v then
        Some v
      else
        None
    | Node { l; v; r; _ } ->
      if f v then
        find_first_opt_aux v f l
      else
        find_first_opt f r
end
OCaml

Innovation. Community. Security.