Source file flow_set.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
module type OrderedType = sig
type t
val compare : t -> t -> int
end
module type S = sig
type elt
type t
val empty : t
val is_empty : t -> bool
val mem : elt -> t -> bool
val add : elt -> t -> t
val singleton : elt -> t
val remove : elt -> t -> t
val union : t -> t -> t
val inter : t -> t -> t
val disjoint : t -> t -> bool
val diff : t -> t -> t
val compare : t -> t -> int
val equal : t -> t -> bool
val subset : t -> t -> bool
val iter : (elt -> unit) -> t -> unit
val map : (elt -> elt) -> t -> t
val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool
val filter : (elt -> bool) -> t -> t
val partition : (elt -> bool) -> t -> t * t
val cardinal : t -> int
val elements : t -> elt list
val min_elt : t -> elt
val min_elt_opt : t -> elt option
val max_elt : t -> elt
val max_elt_opt : t -> elt option
val choose : t -> elt
val choose_opt : t -> elt option
val find : elt -> t -> elt
val find_opt : elt -> t -> elt option
val to_seq : t -> elt Seq.t
val of_list : elt list -> t
val make_pp : (Format.formatter -> elt -> unit) -> Format.formatter -> t -> unit
val of_increasing_iterator_unchecked : (unit -> elt) -> int -> t
val of_sorted_array_unchecked : elt array -> t
val find_first_opt : (elt -> bool) -> t -> elt option
end
type 'elt t0 =
| Empty
| Leaf of 'elt
| Node of {
h: int;
v: 'elt;
l: 'elt t0;
r: 'elt t0;
}
type 'elt partial_node = {
h: int;
v: 'elt;
l: 'elt t0;
r: 'elt t0;
}
external ( ~! ) : 'elt t0 -> 'elt partial_node = "%identity"
type ('elt, 't) enumeration0 =
| End
| More of 'elt * 't * ('elt, 't) enumeration0
let rec cons_enum s e =
match s with
| Empty -> e
| Leaf v -> More (v, Empty, e)
| Node { l; v; r; _ } -> cons_enum l (More (v, r, e))
let rec seq_of_enum_ c () =
match c with
| End -> Seq.Nil
| More (x, t, rest) -> Seq.Cons (x, seq_of_enum_ (cons_enum t rest))
let to_seq c = seq_of_enum_ (cons_enum c End)
let[@inline] height = function
| Empty -> 0
| Leaf _ -> 1
| Node { h; _ } -> h
let[@inline] singleton x = Leaf x
let unsafe_node ~l ~v ~r =
match (l, r) with
| (Empty, Empty) -> singleton v
| (Leaf _, Empty)
| (Leaf _, Leaf _)
| (Empty, Leaf _) ->
Node { l; v; r; h = 2 }
| (Node { h; _ }, (Leaf _ | Empty))
| ((Leaf _ | Empty), Node { h; _ }) ->
Node { l; v; r; h = h + 1 }
| (Node { h = hl; _ }, Node { h = hr; _ }) ->
let h =
if hl >= hr then
hl + 1
else
hr + 1
in
Node { l; v; r; h }
let create l v r =
let hl = height l in
let hr = height r in
Node
{
l;
v;
r;
h =
( if hl >= hr then
hl + 1
else
hr + 1
);
}
let rec of_increasing_iterator_unchecked f = function
| 0 -> Empty
| 1 ->
let v = f () in
Leaf v
| n ->
let lenl = n lsr 1 in
let lenr = n - lenl - 1 in
let l = of_increasing_iterator_unchecked f lenl in
let v = f () in
let r = of_increasing_iterator_unchecked f lenr in
Node { l; v; r; h = height l + 1 }
let of_sorted_array_unchecked xs =
let len = Array.length xs in
let i = ref 0 in
let f () =
let x = xs.(!i) in
incr i;
x
in
of_increasing_iterator_unchecked f len
let bal l v r =
let hl = height l in
let hr = height r in
if hl > hr + 2 then
let { l = ll; v = lv; r = lr; _ } = ~!l in
if height ll >= height lr then
create ll lv (unsafe_node ~l:lr ~v ~r)
else
let { l = lrl; v = lrv; r = lrr; _ } = ~!lr in
create (unsafe_node ~l:ll ~v:lv ~r:lrl) lrv (unsafe_node ~l:lrr ~v ~r)
else if hr > hl + 2 then
let { l = rl; v = rv; r = rr; _ } = ~!r in
if height rr >= height rl then
create (unsafe_node ~l ~v ~r:rl) rv rr
else
let { l = rll; v = rlv; r = rlr; _ } = ~!rl in
create (unsafe_node ~l ~v ~r:rll) rlv (unsafe_node ~l:rlr ~v:rv ~r:rr)
else
unsafe_node ~l ~v ~r
let rec add_min_element x = function
| Empty -> singleton x
| Leaf v -> unsafe_node ~l:(singleton x) ~v ~r:Empty
| Node { l; v; r; _ } -> bal (add_min_element x l) v r
let rec add_max_element x = function
| Empty -> singleton x
| Leaf v -> unsafe_node ~l:Empty ~v ~r:(singleton x)
| Node { l; v; r; _ } -> bal l v (add_max_element x r)
let rec join l v r =
match (l, r) with
| (Empty, _) -> add_min_element v r
| (_, Empty) -> add_max_element v l
| (Leaf _, Leaf _) -> unsafe_node ~l ~v ~r
| (Leaf _, Node { l = rl; v = rv; r = rr; h = rh }) ->
if rh > 3 then
bal (join l v rl) rv rr
else
create l v r
| (Node { l = ll; v = lv; r = lr; h = lh }, Leaf _) ->
if lh > 3 then
bal ll lv (join lr v r)
else
create l v r
| (Node { l = ll; v = lv; r = lr; h = lh }, Node { l = rl; v = rv; r = rr; h = rh }) ->
if lh > rh + 2 then
bal ll lv (join lr v r)
else if rh > lh + 2 then
bal (join l v rl) rv rr
else
create l v r
let rec min_elt = function
| Empty -> raise Not_found
| Leaf v -> v
| Node { l = Empty; v; _ } -> v
| Node { l; _ } -> min_elt l
let rec min_elt_opt = function
| Empty -> None
| Leaf v -> Some v
| Node { l = Empty; v; _ } -> Some v
| Node { l; _ } -> min_elt_opt l
let rec max_elt = function
| Empty -> raise Not_found
| Node { v; r = Empty; _ } -> v
| Leaf v -> v
| Node { r; _ } -> max_elt r
let rec max_elt_opt = function
| Empty -> None
| Node { v; r = Empty; _ } -> Some v
| Leaf v -> Some v
| Node { r; _ } -> max_elt_opt r
let rec remove_min_elt = function
| Empty -> invalid_arg "Set.remove_min_elt"
| Leaf _ -> Empty
| Node { l = Empty; r; _ } -> r
| Node { l; v; r; _ } -> bal (remove_min_elt l) v r
let merge t1 t2 =
match (t1, t2) with
| (Empty, t) -> t
| (t, Empty) -> t
| (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2)
let concat t1 t2 =
match (t1, t2) with
| (Empty, t) -> t
| (t, Empty) -> t
| (_, _) -> join t1 (min_elt t2) (remove_min_elt t2)
let rec cardinal = function
| Empty -> 0
| Leaf _ -> 1
| Node { l; r; _ } -> cardinal l + 1 + cardinal r
let rec elements_aux accu = function
| Empty -> accu
| Leaf v -> v :: accu
| Node { l; v; r; _ } -> elements_aux (v :: elements_aux accu r) l
let elements s = elements_aux [] s
let empty = Empty
let[@inline] is_empty = function
| Empty -> true
| _ -> false
let of_sorted_list l =
let rec sub n l =
match (n, l) with
| (0, l) -> (Empty, l)
| (1, x0 :: l) -> (singleton x0, l)
| (2, x0 :: x1 :: l) -> (Node { l = singleton x0; v = x1; r = Empty; h = 2 }, l)
| (3, x0 :: x1 :: x2 :: l) -> (Node { l = singleton x0; v = x1; r = singleton x2; h = 2 }, l)
| (n, l) ->
let nl = n / 2 in
let (left, l) = sub nl l in
(match l with
| [] -> assert false
| mid :: l ->
let (right, l) = sub (n - nl - 1) l in
(create left mid right, l))
in
fst (sub (List.length l) l)
type 'a t1 = 'a t0 = private
| Empty
| Leaf of 'a
| Node of {
h: int;
v: 'a;
l: 'a t0;
r: 'a t0;
}
module Make (Ord : OrderedType) : S with type elt = Ord.t = struct
type elt = Ord.t
type t = elt t1
let singleton = singleton
let min_elt_opt = min_elt_opt
let max_elt_opt = max_elt_opt
let min_elt = min_elt
let max_elt = max_elt
let elements = elements
let cardinal = cardinal
let is_empty = is_empty
let empty = empty
let choose = min_elt
let choose_opt = min_elt_opt
let rec add x t =
match t with
| Empty -> singleton x
| Leaf v ->
let c = Ord.compare x v in
if c = 0 then
t
else if c < 0 then
unsafe_node ~l:(singleton x) ~v ~r:empty
else
unsafe_node ~l:t ~v:x ~r:empty
| Node { l; v; r; _ } as t ->
let c = Ord.compare x v in
if c = 0 then
t
else if c < 0 then
let ll = add x l in
if l == ll then
t
else
bal ll v r
else
let rr = add x r in
if r == rr then
t
else
bal l v rr
let ( @> ) = add
let rec split x tree =
match tree with
| Empty -> (empty, false, empty)
| Leaf v ->
let c = Ord.compare x v in
if c = 0 then
(empty, true, empty)
else if c < 0 then
(empty, false, tree)
else
(tree, false, empty)
| Node { l; v; r; _ } ->
let c = Ord.compare x v in
if c = 0 then
(l, true, r)
else if c < 0 then
let (ll, pres, rl) = split x l in
(ll, pres, join rl v r)
else
let (lr, pres, rr) = split x r in
(join l v lr, pres, rr)
let rec mem x = function
| Empty -> false
| Leaf v ->
let c = Ord.compare x v in
c = 0
| Node { l; v; r; _ } ->
let c = Ord.compare x v in
c = 0
|| mem
x
( if c < 0 then
l
else
r
)
let rec remove x tree =
match tree with
| Empty -> empty
| Leaf v ->
let c = Ord.compare x v in
if c = 0 then
empty
else
tree
| Node { l; v; r; _ } as t ->
let c = Ord.compare x v in
if c = 0 then
merge l r
else if c < 0 then
let ll = remove x l in
if l == ll then
t
else
bal ll v r
else
let rr = remove x r in
if r == rr then
t
else
bal l v rr
let rec union s1 s2 =
match (s1, s2) with
| (Empty, t2) -> t2
| (t1, Empty) -> t1
| (Leaf v, s2) -> add v s2
| (s1, Leaf v) -> add v s1
| (Node { l = l1; v = v1; r = r1; h = h1 }, Node { l = l2; v = v2; r = r2; h = h2 }) ->
if h1 >= h2 then
if h2 = 1 then
add v2 s1
else
let (l2, _, r2) = split v1 s2 in
join (union l1 l2) v1 (union r1 r2)
else if h1 = 1 then
add v1 s2
else
let (l1, _, r1) = split v2 s1 in
join (union l1 l2) v2 (union r1 r2)
let rec inter s1 s2 =
match (s1, s2) with
| (Empty, _) -> empty
| (_, Empty) -> empty
| (Leaf v, _) ->
if mem v s2 then
s1
else
empty
| (Node { l = l1; v = v1; r = r1; _ }, t2) ->
(match split v1 t2 with
| (l2, false, r2) -> concat (inter l1 l2) (inter r1 r2)
| (l2, true, r2) -> join (inter l1 l2) v1 (inter r1 r2))
type split_bis =
| Found
| NotFound of t * (unit -> t)
let rec split_bis x = function
| Empty -> NotFound (empty, (fun () -> empty))
| Leaf v ->
let c = Ord.compare x v in
if c = 0 then
Found
else
NotFound (empty, (fun () -> empty))
| Node { l; v; r; _ } ->
let c = Ord.compare x v in
if c = 0 then
Found
else if c < 0 then
match split_bis x l with
| Found -> Found
| NotFound (ll, rl) -> NotFound (ll, (fun () -> join (rl ()) v r))
else (
match split_bis x r with
| Found -> Found
| NotFound (lr, rr) -> NotFound (join l v lr, rr)
)
let rec disjoint s1 s2 =
match (s1, s2) with
| (Empty, _)
| (_, Empty) ->
true
| (Leaf v, s)
| (s, Leaf v) ->
not (mem v s)
| (Node { l = l1; v = v1; r = r1; _ }, t2) ->
if s1 == s2 then
false
else (
match split_bis v1 t2 with
| NotFound (l2, r2) -> disjoint l1 l2 && disjoint r1 (r2 ())
| Found -> false
)
let rec diff s1 s2 =
match (s1, s2) with
| (Empty, _) -> empty
| (t1, Empty) -> t1
| (Leaf v, _) ->
if mem v s2 then
empty
else
s1
| (Node { l = l1; v = v1; r = r1; _ }, t2) ->
(match split v1 t2 with
| (l2, false, r2) -> join (diff l1 l2) v1 (diff r1 r2)
| (l2, true, r2) -> concat (diff l1 l2) (diff r1 r2))
let rec compare_aux e1 e2 =
match (e1, e2) with
| (End, End) -> 0
| (End, _) -> -1
| (_, End) -> 1
| (More (v1, r1, e1), More (v2, r2, e2)) ->
let c = Ord.compare v1 v2 in
if c <> 0 then
c
else
compare_aux (cons_enum r1 e1) (cons_enum r2 e2)
let compare s1 s2 = compare_aux (cons_enum s1 End) (cons_enum s2 End)
let equal s1 s2 = compare s1 s2 = 0
let rec subset s1 s2 =
match (s1, s2) with
| (Empty, _) -> true
| (_, Empty) -> false
| (Leaf v1, Leaf v2) ->
let c = Ord.compare v1 v2 in
if c = 0 then
true
else
false
| (Node { v = v1; h; _ }, Leaf v2) ->
h = 1
&&
Ord.compare v1 v2 = 0
| (Leaf v1, Node { l = l2; v = v2; r = r2; _ }) ->
let c = Ord.compare v1 v2 in
if c = 0 then
true
else if c < 0 then
subset s1 l2
else
subset s1 r2
| (Node { l = l1; v = v1; r = r1; _ }, (Node { l = l2; v = v2; r = r2; _ } as t2)) ->
let c = Ord.compare v1 v2 in
if c = 0 then
subset l1 l2 && subset r1 r2
else if c < 0 then
subset (unsafe_node ~l:l1 ~v:v1 ~r:empty) l2 && subset r1 t2
else
subset (unsafe_node ~l:empty ~v:v1 ~r:r1) r2 && subset l1 t2
let rec iter f = function
| Empty -> ()
| Leaf v -> f v
| Node { l; v; r; _ } ->
iter f l;
f v;
iter f r
let rec fold f s accu =
match s with
| Empty -> accu
| Leaf v -> f v accu
| Node { l; v; r; _ } -> fold f r (f v (fold f l accu))
let rec for_all p = function
| Empty -> true
| Leaf v -> p v
| Node { l; v; r; _ } -> p v && for_all p l && for_all p r
let rec exists p = function
| Empty -> false
| Leaf v -> p v
| Node { l; v; r; _ } -> p v || exists p l || exists p r
let rec filter p tree =
match tree with
| Empty -> empty
| Leaf v ->
let pv = p v in
if pv then
tree
else
empty
| Node { l; v; r; _ } as t ->
let l' = filter p l in
let pv = p v in
let r' = filter p r in
if pv then
if l == l' && r == r' then
t
else
join l' v r'
else
concat l' r'
let rec partition p tree =
match tree with
| Empty -> (empty, empty)
| Leaf v ->
let pv = p v in
if pv then
(tree, empty)
else
(empty, tree)
| Node { l; v; r; _ } ->
let (lt, lf) = partition p l in
let pv = p v in
let (rt, rf) = partition p r in
if pv then
(join lt v rt, concat lf rf)
else
(concat lt rt, join lf v rf)
let rec find x = function
| Empty -> raise Not_found
| Leaf v ->
let c = Ord.compare x v in
if c = 0 then
v
else
raise Not_found
| Node { l; v; r; _ } ->
let c = Ord.compare x v in
if c = 0 then
v
else
find
x
( if c < 0 then
l
else
r
)
let rec find_opt x = function
| Empty -> None
| Leaf v ->
let c = Ord.compare x v in
if c = 0 then
Some v
else
None
| Node { l; v; r; _ } ->
let c = Ord.compare x v in
if c = 0 then
Some v
else
find_opt
x
( if c < 0 then
l
else
r
)
let try_join l v r =
if (is_empty l || Ord.compare (max_elt l) v < 0) && (is_empty r || Ord.compare v (min_elt r) < 0)
then
join l v r
else
union l (add v r)
let rec map f tree =
match tree with
| Empty -> empty
| Leaf v ->
let v' = f v in
if v == v' then
tree
else
singleton v'
| Node { l; v; r; _ } as t ->
let l' = map f l in
let v' = f v in
let r' = map f r in
if l == l' && v == v' && r == r' then
t
else
try_join l' v' r'
let of_list l =
match l with
| [] -> empty
| [x0] -> singleton x0
| [x0; x1] -> x1 @> singleton x0
| [x0; x1; x2] -> x2 @> x1 @> singleton x0
| [x0; x1; x2; x3] -> x3 @> x2 @> x1 @> singleton x0
| [x0; x1; x2; x3; x4] -> x4 @> x3 @> x2 @> x1 @> singleton x0
| _ -> of_sorted_list (List.sort_uniq Ord.compare l)
let to_seq = to_seq
let make_pp pp_key fmt iset =
Format.fprintf fmt "@[<2>{";
let elements = elements iset in
(match elements with
| [] -> ()
| _ -> Format.fprintf fmt " ");
ignore
(List.fold_left
(fun sep s ->
if sep then Format.fprintf fmt ";@ ";
pp_key fmt s;
true)
false
elements
);
(match elements with
| [] -> ()
| _ -> Format.fprintf fmt " ");
Format.fprintf fmt "@,}@]"
let of_increasing_iterator_unchecked = of_increasing_iterator_unchecked
let of_sorted_array_unchecked = of_sorted_array_unchecked
let rec find_first_opt_aux v0 f = function
| Empty -> Some v0
| Leaf v ->
if f v then
Some v
else
Some v0
| Node { l; v; r; _ } ->
if f v then
find_first_opt_aux v f l
else
find_first_opt_aux v0 f r
let rec find_first_opt f = function
| Empty -> None
| Leaf v ->
if f v then
Some v
else
None
| Node { l; v; r; _ } ->
if f v then
find_first_opt_aux v f l
else
find_first_opt f r
end