package lsp

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file scheduler.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
open Import

module Worker : sig
  (** Simple queue that is consumed by its own thread *)
  type 'work t

  val create : do_:('a -> unit) -> 'a t

  type task

  val cancel : task -> unit

  val add_work : 'a t -> 'a -> (task, [ `Stopped ]) result

  val stop : _ t -> unit
end = struct
  type state =
    | Running of Thread.t
    | Stopped of Thread.t
    | Finished

  type 'a t =
    { work : 'a Removable_queue.t
    ; mutable state : state
    ; mutex : Mutex.t
    ; work_available : Condition.t
    }

  and task = Task : 'a t * 'a Removable_queue.node -> task

  let cancel (Task (t, node)) =
    with_mutex t.mutex ~f:(fun () -> Removable_queue.remove node)

  let is_running t =
    match t.state with
    | Running _ -> true
    | Stopped _
    | Finished ->
      false

  let run (f, t) =
    let rec loop () =
      match t.state with
      | Stopped _ -> (
        match Removable_queue.pop t.work with
        | None -> t.state <- Finished
        | Some job -> do_work job)
      | Finished -> ()
      | Running _ -> (
        match Removable_queue.pop t.work with
        | Some job -> do_work job
        | None ->
          while Removable_queue.is_empty t.work && is_running t do
            Condition.wait t.work_available t.mutex
          done;
          loop ())
    and do_work job =
      Mutex.unlock t.mutex;
      f job;
      Mutex.lock t.mutex;
      loop ()
    in
    with_mutex t.mutex ~f:loop

  let create ~do_ =
    let t =
      { work = Removable_queue.create ()
      ; state = Finished
      ; mutex = Mutex.create ()
      ; work_available = Condition.create ()
      }
    in
    t.state <- Running (Thread.create run (do_, t));
    t

  let add_work (type a) (t : a t) (w : a) =
    with_mutex t.mutex ~f:(fun () ->
        if is_running t then (
          let node = Removable_queue.push t.work w in
          Condition.signal t.work_available;
          Ok (Task (t, node))
        ) else
          Error `Stopped)

  let stop (t : _ t) =
    with_mutex t.mutex ~f:(fun () ->
        match t.state with
        | Running th ->
          t.state <- Stopped th;
          Condition.signal t.work_available
        | Stopped _
        | Finished ->
          ())
end

module Timer_id = Id.Make ()

type process =
  { pid : Pid.t
  ; ivar : Unix.process_status Fiber.Ivar.t
  }

type process_state =
  | Running of process
  | Zombie of Unix.process_status

type t =
  { mutable events_pending : int
  ; events : event Queue.t
  ; events_mutex : Mutex.t
  ; time_mutex : Mutex.t
  ; event_ready : Condition.t
  ; timers_available : Condition.t
  ; timers_available_mutex : Mutex.t
  ; earliest_next_mutex : Mutex.t
  ; earliest_next_barrier : Barrier.t
  ; mutable earliest_next : float option
  ; mutable threads : thread list
  ; mutable time : Thread.t
  ; mutable waker : Thread.t
  ; (* TODO Replace with Removable_queue *)
    timers : (Timer_id.t, active_timer ref) Table.t
  ; process_watcher : process_watcher Lazy.t
  }

and event =
  | Job_completed : 'a * 'a Fiber.Ivar.t -> event
  | Scheduled of active_timer
  | Abort

and job =
  | Pending :
      (unit -> 'a)
      * ('a, [ `Exn of Exn_with_backtrace.t | `Canceled ]) result Fiber.Ivar.t
      -> job

and thread =
  { scheduler : t
  ; worker : job Worker.t
  }

and timer =
  { mutable delay : float
  ; timer_scheduler : t
  ; timer_id : Timer_id.t
  }

and active_timer =
  { scheduled : float
  ; ivar : [ `Resolved | `Cancelled ] Fiber.Ivar.t
  ; parent : timer
  }

and process_watcher =
  { mutex : Mutex.t
  ; something_is_running : Condition.t
  ; table : (Pid.t, process_state) Table.t
  ; process_scheduler : t
  ; mutable running_count : int
  }

let add_events t = function
  | [] -> ()
  | events ->
    with_mutex t.events_mutex ~f:(fun () ->
        List.iter events ~f:(Queue.push t.events);
        Condition.signal t.event_ready)

let is_empty table = Table.length table = 0

let me = Fiber.Var.create ()

let scheduler () = Fiber.Var.get_exn me

let signal_timers_available t =
  with_mutex t.timers_available_mutex ~f:(fun () ->
      Condition.signal t.timers_available)

let time_loop t =
  let rec loop () =
    let to_run = ref [] in
    let earliest_next = ref None in
    with_mutex t.time_mutex ~f:(fun () ->
        if not (is_empty t.timers) then
          let now = Unix.gettimeofday () in
          Table.filteri_inplace t.timers ~f:(fun ~key:_ ~data:active_timer ->
              let active_timer = !active_timer in
              let scheduled_at =
                active_timer.scheduled +. active_timer.parent.delay
              in
              let need_to_run = scheduled_at < now in
              if need_to_run then
                to_run := active_timer :: !to_run
              else
                earliest_next :=
                  Some
                    (match !earliest_next with
                    | None -> scheduled_at
                    | Some v -> min scheduled_at v);
              not need_to_run));
    let to_run =
      List.sort !to_run ~compare:(fun x y ->
          Timer_id.compare x.parent.timer_id y.parent.timer_id)
      |> List.map ~f:(fun x -> Scheduled x)
    in
    add_events t to_run;
    Option.iter !earliest_next ~f:(fun s ->
        with_mutex t.earliest_next_mutex ~f:(fun () ->
            t.earliest_next <- Some s);
        match Barrier.signal t.earliest_next_barrier with
        | Ok () -> ()
        | Error `Closed -> assert false);
    with_mutex t.timers_available_mutex ~f:(fun () ->
        Condition.wait t.timers_available t.timers_available_mutex);
    loop ()
  in
  loop ()

let wake_loop t =
  let rec loop timeout =
    match Barrier.await t.earliest_next_barrier ?timeout with
    | Error (`Closed (`Read b)) -> if b then signal_timers_available t
    | Error `Timeout ->
      signal_timers_available t;
      loop None
    | Ok () -> (
      let wakeup_at =
        with_mutex t.earliest_next_mutex ~f:(fun () ->
            let v = t.earliest_next in
            t.earliest_next <- None;
            v)
      in
      let now = Unix.gettimeofday () in
      match wakeup_at with
      | None -> loop None
      | Some wakeup_at ->
        if now < wakeup_at then
          loop (Some (wakeup_at -. now))
        else (
          signal_timers_available t;
          loop None
        ))
  in
  loop None

let create_thread scheduler =
  let worker =
    let do_ (Pending (f, ivar)) =
      let res =
        match Exn_with_backtrace.try_with f with
        | Ok x -> Ok x
        | Error exn -> Error (`Exn exn)
      in
      add_events scheduler [ Job_completed (res, ivar) ]
    in
    Worker.create ~do_
  in
  let t = { scheduler; worker } in
  scheduler.threads <- t :: scheduler.threads;
  t

let add_pending_events t by =
  with_mutex t.events_mutex ~f:(fun () ->
      t.events_pending <- t.events_pending + by;
      assert (t.events_pending >= 0))

type 'a task =
  { ivar :
      ('a, [ `Exn of Exn_with_backtrace.t | `Canceled ]) result Fiber.Ivar.t
  ; task : Worker.task
  }

let await task = Fiber.Ivar.read task.ivar

let await_no_cancel task =
  let open Fiber.O in
  let+ res = Fiber.Ivar.read task.ivar in
  match res with
  | Ok x -> Ok x
  | Error `Canceled -> assert false
  | Error (`Exn exn) -> Error exn

let cancel_task task =
  let open Fiber.O in
  let* status = Fiber.Ivar.peek task.ivar in
  match status with
  | Some _ -> Fiber.return ()
  | None ->
    Worker.cancel task.task;
    Fiber.Ivar.fill task.ivar (Error `Canceled)

let async (t : thread) f =
  add_pending_events t.scheduler 1;
  let ivar = Fiber.Ivar.create () in
  let work = Worker.add_work t.worker (Pending (f, ivar)) in
  Result.map work ~f:(fun task -> { ivar; task })

let async_exn t f =
  match async t f with
  | Error `Stopped -> Code_error.raise "async_exn: stopped thread" []
  | Ok task -> task

let stop (t : thread) = Worker.stop t.worker

let cancel_timers t =
  let timers = ref [] in
  with_mutex t.time_mutex ~f:(fun () ->
      Table.filteri_inplace t.timers ~f:(fun ~key:_ ~data:timer ->
          timers := !timer.ivar :: !timers;
          false));
  Fiber.parallel_iter !timers ~f:(fun ivar -> Fiber.Ivar.fill ivar `Cancelled)

type run_error =
  | Never
  | Abort_requested
  | Exn of Exn_with_backtrace.t

exception Abort of run_error

let () =
  Printexc.register_printer (function
    | Abort Never -> Some "Abort: Never"
    | Abort Abort_requested -> Some "Abort: requested"
    | Abort (Exn exn) ->
      Some
        ("Abort: " ^ Format.asprintf "%a@." Exn_with_backtrace.pp_uncaught exn)
    | _ -> None)

let event_next (t : t) : Fiber.fill =
  with_mutex t.events_mutex ~f:(fun () ->
      while Queue.is_empty t.events do
        Condition.wait t.event_ready t.events_mutex
      done;
      let consume_event () =
        let res = Queue.pop_exn t.events in
        t.events_pending <- t.events_pending - 1;
        assert (t.events_pending >= 0);
        res
      in
      if Queue.is_empty t.events then
        Error (Abort Never)
      else
        match consume_event () with
        | Abort -> Error (Abort Abort_requested)
        | Job_completed (a, ivar) -> Ok (Fiber.Fill (ivar, a))
        | Scheduled active_timer -> Ok (Fill (active_timer.ivar, `Resolved)))
  |> Result.ok_exn

let report t =
  let status m =
    if Mutex.try_lock m then
      "was unlocked"
    else
      "locked"
  in
  [ ("time_mutex", t.time_mutex)
  ; ("timers_available_mutex", t.timers_available_mutex)
  ; ("events_mutex", t.events_mutex)
  ]
  |> List.iter ~f:(fun (name, mutex) ->
         Format.eprintf "%s: %s@." name (status mutex));
  Format.eprintf "pending events: %d@." t.events_pending;
  Format.eprintf "events: %d@." (Queue.length t.events);
  Format.eprintf "threads: %d@." (List.length t.threads);
  Format.eprintf "timers: %d@." (Table.length t.timers)

let iter (t : t) =
  if t.events_pending = 0 then (
    let () = assert (Queue.is_empty t.events) in
    report t;
    raise (Abort Never)
  ) else
    event_next t

let create_timer t ~delay =
  { timer_scheduler = t; delay; timer_id = Timer_id.gen () }

let set_delay t ~delay = t.delay <- delay

let schedule (type a) (timer : timer) (f : unit -> a Fiber.t) :
    (a, [ `Cancelled ]) result Fiber.t =
  let open Fiber.O in
  let active_timer =
    let scheduled = Unix.gettimeofday () in
    { scheduled; ivar = Fiber.Ivar.create (); parent = timer }
  in
  let* () =
    match
      with_mutex timer.timer_scheduler.time_mutex ~f:(fun () ->
          match Table.find timer.timer_scheduler.timers timer.timer_id with
          | Some active ->
            let to_cancel = !active.ivar in
            active := active_timer;
            `Cancel to_cancel
          | None ->
            Table.add_exn timer.timer_scheduler.timers timer.timer_id
              (ref active_timer);
            `Signal_timers_available)
    with
    | `Cancel ivar -> Fiber.Ivar.fill ivar `Cancelled
    | `Signal_timers_available ->
      add_pending_events timer.timer_scheduler 1;
      signal_timers_available timer.timer_scheduler;
      Fiber.return ()
  in
  let* res = Fiber.Ivar.read active_timer.ivar in
  match res with
  | `Cancelled as e -> Fiber.return (Error e)
  | `Resolved ->
    let+ res = f () in
    Ok res

let cancel_timer (timer : timer) =
  let t = timer.timer_scheduler in
  match
    with_mutex t.time_mutex ~f:(fun () ->
        match Table.find t.timers timer.timer_id with
        | None -> None
        | Some at ->
          Table.remove t.timers timer.timer_id;
          Some !at.ivar)
  with
  | None -> Fiber.return ()
  | Some ivar ->
    with_mutex t.events_mutex ~f:(fun () ->
        t.events_pending <- t.events_pending - 1);
    Fiber.Ivar.fill ivar `Cancelled

let abort t =
  (* TODO proper cleanup *)
  add_events t [ Abort ]

module Process_watcher : sig
  val init : t -> process_watcher

  (** Register a new running process. *)
  val register : process_watcher -> process -> unit

  (** Send the following signal to all running processes. *)
  val killall : process_watcher -> int -> unit
end = struct
  module Process_table : sig
    val add : process_watcher -> process -> unit

    val remove : process_watcher -> pid:Pid.t -> Unix.process_status -> unit

    val running_count : process_watcher -> int

    val iter : process_watcher -> f:(process -> unit) -> unit
  end = struct
    let add t job =
      match Table.find t.table job.pid with
      | None ->
        Table.set t.table job.pid (Running job);
        t.running_count <- t.running_count + 1;
        if t.running_count = 1 then Condition.signal t.something_is_running
      | Some (Zombie status) ->
        Table.remove t.table job.pid;
        add_events t.process_scheduler [ Job_completed (status, job.ivar) ]
      | Some (Running _) -> assert false

    let remove t ~pid status =
      match Table.find t.table pid with
      | None -> Table.set t.table pid (Zombie status)
      | Some (Running job) ->
        t.running_count <- t.running_count - 1;
        Table.remove t.table pid;
        add_events t.process_scheduler [ Job_completed (status, job.ivar) ]
      | Some (Zombie _) -> assert false

    let iter t ~f =
      Table.iter t.table ~f:(fun data ->
          match data with
          | Running job -> f job
          | Zombie _ -> ())

    let running_count t = t.running_count
  end

  let register t process =
    add_pending_events t.process_scheduler 1;
    Mutex.lock t.mutex;
    Process_table.add t process;
    Mutex.unlock t.mutex

  let killall t signal =
    Mutex.lock t.mutex;
    Process_table.iter t ~f:(fun job ->
        try Unix.kill (Pid.to_int job.pid) signal with
        | Unix.Unix_error _ -> ());
    Mutex.unlock t.mutex

  exception Finished of process * Unix.process_status

  let wait_nonblocking_win32 t =
    try
      Process_table.iter t ~f:(fun job ->
          let pid, status = Unix.waitpid [ WNOHANG ] (Pid.to_int job.pid) in
          if pid <> 0 then raise_notrace (Finished (job, status)));
      false
    with
    | Finished (job, status) ->
      (* We need to do the [Unix.waitpid] and remove the process while holding
         the lock, otherwise the pid might be reused in between. *)
      Process_table.remove t ~pid:job.pid status;
      true

  let wait_win32 t =
    while not (wait_nonblocking_win32 t) do
      Mutex.unlock t.mutex;
      Thread.delay 0.001;
      Mutex.lock t.mutex
    done

  let wait_unix t =
    Mutex.unlock t.mutex;
    let pid, status = Unix.wait () in
    Mutex.lock t.mutex;
    let pid = Pid.of_int pid in
    Process_table.remove t ~pid status

  let wait =
    if Sys.win32 then
      wait_win32
    else
      wait_unix

  let run t =
    Mutex.lock t.mutex;
    while true do
      while Process_table.running_count t = 0 do
        Condition.wait t.something_is_running t.mutex
      done;
      wait t
    done

  let init process_scheduler =
    let t =
      { mutex = Mutex.create ()
      ; something_is_running = Condition.create ()
      ; table = Table.create (module Pid) 128
      ; running_count = 0
      ; process_scheduler
      }
    in
    ignore (Thread.create run t : Thread.t);
    t
end

let cleanup t =
  Barrier.close t.earliest_next_barrier;
  List.iter t.threads ~f:stop;
  if Lazy.is_val t.process_watcher then
    Process_watcher.killall (Lazy.force t.process_watcher) Sys.sigkill

let wait_for_process t pid =
  let ivar = Fiber.Ivar.create () in
  Process_watcher.register (Lazy.force t.process_watcher) { pid; ivar };
  Fiber.Ivar.read ivar

let run_result : 'a. t -> 'a Fiber.t -> ('a, _) result =
 fun t f ->
  let f = Fiber.Var.set me t (fun () -> f) in
  let iter () = iter t in
  let res =
    match Fiber.run f ~iter with
    | exception Abort err -> Error err
    | exception exn ->
      let exn = Exn_with_backtrace.capture exn in
      Error (Exn exn)
    | res ->
      assert (t.events_pending = 0);
      Ok res
  in
  cleanup t;
  res

let run t f =
  match run_result t f with
  | Ok s -> s
  | Error e -> raise (Abort e)

let create () =
  let rec t =
    { events_pending = 0
    ; events = Queue.create ()
    ; events_mutex = Mutex.create ()
    ; time_mutex = Mutex.create ()
    ; event_ready = Condition.create ()
    ; earliest_next_mutex = Mutex.create ()
    ; earliest_next = None
    ; earliest_next_barrier = Barrier.create ()
    ; threads = []
    ; timers = Table.create (module Timer_id) 10
    ; timers_available = Condition.create ()
    ; timers_available_mutex = Mutex.create ()
    ; time = Thread.self ()
    ; waker = Thread.self ()
    ; process_watcher
    }
  and process_watcher = lazy (Process_watcher.init t) in
  t.time <- Thread.create time_loop t;
  t.waker <- Thread.create wake_loop t;
  t
OCaml

Innovation. Community. Security.