package lambdapi

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file eval.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
(** Evaluation and conversion. *)

open Lplib open Extra
open Timed
open Common open Error open Debug
open Term
open Print

(** The head-structure of a term t is:
- λx:_,h if t=λx:a,u and h is the head-structure of u
- Π if t=Πx:a,u
- h _ if t=uv and h is the head-structure of u
- ? if t=?M[t1,..,tn] (and ?M is not instantiated)
- t itself otherwise (TYPE, KIND, x, f)

A term t is in head-normal form (hnf) if its head-structure is invariant by
reduction.

A term t is in weak head-normal form (whnf) if it is an abstration or if it
is in hnf. In particular, a term in head-normal form is in weak head-normal
form.

A term t is in strong normal form (snf) if it cannot be reduced further.
*)

(** Logging function for evaluation. *)
let log_eval = Logger.make 'e' "eval" "evaluation"
let log_eval = log_eval.pp

(** Logging function for equality modulo rewriting. *)
let log_conv = Logger.make 'c' "conv" "conversion"
let log_conv = log_conv.pp

(** Convert modulo eta. *)
let eta_equality : bool ref = Console.register_flag "eta_equality" false

(** Counter used to preserve physical equality in {!val:whnf}. *)
let steps : int Stdlib.ref = Stdlib.ref 0

(** {1 Define reduction functions parametrised by {!whnf}} *)

(** [hnf whnf t] computes a hnf of [t] using [whnf]. *)
let hnf : (term -> term) -> (term -> term) = fun whnf ->
  let rec hnf t =
    match whnf t with
    | Abst(a,t) ->
      let x, t = Bindlib.unbind t in mk_Abst(a, bind x lift (hnf t))
    | t -> t
  in hnf

(** [snf whnf t] computes a snf of [t] using [whnf]. *)
let snf : (term -> term) -> (term -> term) = fun whnf ->
  let rec snf t =
    if Logger.log_enabled () then log_eval "snf %a" term t;
    let h = whnf t in
    if Logger.log_enabled () then log_eval "whnf %a = %a" term t term h;
    match h with
    | Vari _
    | Type
    | Kind
    | Symb _ -> h
    | LLet(_,t,b) -> snf (Bindlib.subst b t)
    | Prod(a,b) ->
        let x, b = Bindlib.unbind b in mk_Prod(snf a, bind x lift (snf b))
    | Abst(a,b) ->
        let x, b = Bindlib.unbind b in mk_Abst(snf a, bind x lift (snf b))
    | Appl(t,u)   -> mk_Appl(snf t, snf u)
    | Meta(m,ts)  -> mk_Meta(m, Array.map snf ts)
    | Patt(i,n,ts) -> mk_Patt(i,n,Array.map snf ts)
    | Plac _      -> h (* may happen when reducing coercions *)
    | TEnv(_,_)   -> assert false
    | Wild        -> assert false
    | TRef(_)     -> assert false
  in snf

type rw_tag = [ `NoBeta | `NoRw | `NoExpand ]

(** Configuration of the reduction engine. *)
module Config = struct

  type t =
    { context : ctxt
    (** Context of the reduction used for generating metas. *)
    ; varmap : term VarMap.t (** Variable definitions. *)
    ; rewrite : bool (** Whether to apply user-defined rewriting rules. *)
    ; expand_defs : bool (** Whether to expand definitions. *)
    ; beta : bool (** Whether to beta-normalise *)
    ; dtree : sym -> dtree (** Retrieves the dtree of a symbol *) }

  (** [make ?dtree ?rewrite c] creates a new configuration with
      tags [?rewrite] (being empty if not provided), context [c] and
      dtree map [?dtree] (defaulting to getting the dtree from the symbol).
      By default, beta reduction and rewriting is enabled for all symbols. *)
  let make : ?dtree:(sym -> dtree) -> ?tags:rw_tag list -> ctxt -> t =
  fun ?(dtree=fun sym -> !(sym.sym_dtree)) ?(tags=[]) context ->
    let beta = not @@ List.mem `NoBeta tags in
    let expand_defs = not @@ List.mem `NoExpand tags in
    let rewrite = not @@ List.mem `NoRw tags in
    {context; varmap = Ctxt.to_map context; rewrite; expand_defs; beta; dtree}

  (** [unfold cfg a] unfolds [a] if it's a variable defined in the
      configuration [cfg]. *)
  let rec unfold : t -> term -> term = fun cfg a ->
    match Term.unfold a with
    | Vari x as a ->
      begin match VarMap.find_opt x cfg.varmap with
        | None -> a
        | Some v -> unfold cfg v
      end
    | a -> a

end

type config = Config.t

(** [eq_alpha a b] tests the equality modulo alpha of [a] and [b]. *)
let rec eq_alpha a b =
  match unfold a, unfold b with
  | Vari x, Vari y -> Bindlib.eq_vars x y
  | Type, Type
  | Kind, Kind -> true
  | Symb s1, Symb s2 -> s1==s2
  | Prod(a1,b1), Prod(a2,b2)
  | Abst(a1,b1), Abst(a2,b2) ->
      eq_alpha a1 a2 && let _,b1,b2 = Bindlib.unbind2 b1 b2 in eq_alpha b1 b2
  | Appl(a1,b1), Appl(a2,b2) -> eq_alpha a1 a2 && eq_alpha b1 b2
  | Meta(m1,a1), Meta(m2,a2) -> m1 == m2 && Array.for_all2 eq_alpha a1 a2
  | LLet(a1,t1,u1), LLet(a2,t2,u2) ->
      eq_alpha a1 a2 && eq_alpha t1 t2
      && let _,u1,u2 = Bindlib.unbind2 u1 u2 in eq_alpha u1 u2
  | Patt(Some i,_,ts), Patt(Some j,_,us) ->
      i=j && Array.for_all2 eq_alpha ts us
  | Patt(None,_,_), _ | _, Patt(None,_,_) -> assert false
  | TEnv _, _| _, TEnv _ -> assert false
  | _ -> false

(** [eq_modulo whnf a b] tests the convertibility of [a] and [b] using
    [whnf]. *)
let eq_modulo : (config -> term -> term) -> config -> term -> term -> bool =
  fun whnf ->
  let rec eq : config -> (term * term) list -> unit = fun cfg l ->
    match l with
    | [] -> ()
    | (a,b)::l ->
    if Logger.log_enabled () then log_conv "eq: %a ≡ %a" term a term b;
    if eq_alpha a b then eq cfg l else
    let a = Config.unfold cfg a and b = Config.unfold cfg b in
    match a, b with
    | LLet(_,t,u), _ ->
      let x,u = Bindlib.unbind u in
      eq {cfg with varmap = VarMap.add x t cfg.varmap} ((u,b)::l)
    | _, LLet(_,t,u) ->
      let x,u = Bindlib.unbind u in
      eq {cfg with varmap = VarMap.add x t cfg.varmap} ((a,u)::l)
    | Patt(None,_,_), _ | _, Patt(None,_,_) -> assert false
    | Patt(Some i,_,ts), Patt(Some j,_,us) ->
      if i=j then eq cfg (List.add_array2 ts us l) else raise Exit
    | TEnv _, _| _, TEnv _ -> assert false
    | Kind, Kind
    | Type, Type -> eq cfg l
    | Vari x, Vari y -> if Bindlib.eq_vars x y then eq cfg l else raise Exit
    | Symb f, Symb g when f == g -> eq cfg l
    | Prod(a1,b1), Prod(a2,b2)
    | Abst(a1,b1), Abst(a2,b2) ->
      let _,b1,b2 = Bindlib.unbind2 b1 b2 in eq cfg ((a1,a2)::(b1,b2)::l)
    | Abst _, (Type|Kind|Prod _)
    | (Type|Kind|Prod _), Abst _ -> raise Exit
    | (Abst(_ ,b), t | t, Abst(_ ,b)) when !eta_equality ->
      let x,b = Bindlib.unbind b in eq cfg ((b, mk_Appl(t, mk_Vari x))::l)
    | Meta(m1,a1), Meta(m2,a2) when m1 == m2 ->
      eq cfg (if a1 == a2 then l else List.add_array2 a1 a2 l)
    (* cases of failure *)
    | Kind, _ | _, Kind
    | Type, _ | _, Type -> raise Exit
    | ((Symb f, (Vari _|Meta _|Prod _|Abst _))
      | ((Vari _|Meta _|Prod _|Abst _), Symb f)) when is_constant f ->
      raise Exit
    | _ ->
    let a = whnf cfg a and b = whnf cfg b in
    if Logger.log_enabled () then log_conv "whnf: %a ≡ %a" term a term b;
    match a, b with
    | Patt(None,_,_), _ | _, Patt(None,_,_) -> assert false
    | Patt(Some i,_,ts), Patt(Some j,_,us) ->
      if i=j then eq cfg (List.add_array2 ts us l) else raise Exit
    | TEnv _, _| _, TEnv _ -> assert false
    | Kind, Kind
    | Type, Type -> eq cfg l
    | Vari x, Vari y when Bindlib.eq_vars x y -> eq cfg l
    | Symb f, Symb g when f == g -> eq cfg l
    | Prod(a1,b1), Prod(a2,b2)
    | Abst(a1,b1), Abst(a2,b2) ->
      let _,b1,b2 = Bindlib.unbind2 b1 b2 in eq cfg ((a1,a2)::(b1,b2)::l)
    | (Abst(_ ,b), t | t, Abst(_ ,b)) when !eta_equality ->
      let x,b = Bindlib.unbind b in eq cfg ((b, mk_Appl(t, mk_Vari x))::l)
    | Meta(m1,a1), Meta(m2,a2) when m1 == m2 ->
      eq cfg (if a1 == a2 then l else List.add_array2 a1 a2 l)
    | Appl(t1,u1), Appl(t2,u2) -> eq cfg ((u1,u2)::(t1,t2)::l)
    | _ -> raise Exit
  in
  fun cfg a b ->
  if Logger.log_enabled () then log_conv "eq_modulo: %a ≡ %a" term a term b;
  try eq cfg [(a,b)]; true
  with Exit -> if Logger.log_enabled () then log_conv "failed"; false

(** Abstract machine stack. *)
type stack = term list

(** [to_tref t] transforms {!constructor:Appl} into
   {!constructor:TRef}. *)
let to_tref : term -> term = fun t ->
  match t with
  | Appl _ -> mk_TRef(ref (Some t))
  | Symb s when s.sym_prop <> Const -> mk_TRef(ref (Some t))
  | t -> t

(** {1 Define the main {!whnf} function that takes a {!config} as argument} *)

(** [whnf cfg t] computes a whnf of the term [t] wrt configuration [c]. *)
let rec whnf : config -> term -> term = fun cfg t ->
  (*if Logger.log_enabled () then log_eval "whnf %a" term t;*)
  let n = Stdlib.(!steps) in
  let u, stk = whnf_stk cfg t [] in
  let r = if Stdlib.(!steps) <> n then add_args u stk else unfold t in
  (*if Logger.log_enabled () then
    log_eval "whnf %a%a = %a" ctxt cfg.context term t term r;*)
  r

(** [whnf_stk cfg t stk] computes a whnf of [add_args t stk] wrt
    configuration [c]. *)
and whnf_stk : config -> term -> stack -> term * stack = fun cfg t stk ->
  (*if Logger.log_enabled () then
    log_eval "whnf_stk %a%a %a"
      ctxt cfg.context term t (D.list term) stk;*)
  let t = unfold t in
  match t, stk with
  | Appl(f,u), stk -> whnf_stk cfg f (to_tref u::stk)
  | Abst(_,f), u::stk when cfg.Config.beta ->
    Stdlib.incr steps; whnf_stk cfg (Bindlib.subst f u) stk
  | LLet(_,t,u), stk ->
    Stdlib.incr steps; whnf_stk cfg (Bindlib.subst u t) stk
  | (Symb s as h, stk) as r ->
    begin match !(s.sym_def) with
    | Some t ->
      if !(s.sym_opaq) || not cfg.Config.expand_defs then r else
        (Stdlib.incr steps; whnf_stk cfg t stk)
    | None when not cfg.Config.rewrite -> r
    | None ->
      (* If [s] is modulo C or AC, we put its arguments in whnf and reorder
         them to have a term in AC-canonical form. *)
      let stk =
        if is_modulo s then
          let n = Stdlib.(!steps) in
          (* We put the arguments in whnf. *)
          let stk' = List.map (whnf cfg) stk in
          if Stdlib.(!steps) = n then (* No argument has been reduced. *)
            stk
          else (* At least one argument has been reduced. *)
            (* We put the term in AC-canonical form. *)
            snd (get_args (add_args h stk'))
        else stk
      in
      match tree_walk cfg (cfg.dtree s) stk with
      | None -> h, stk
      | Some (t', stk') ->
        if Logger.log_enabled () then
          log_eval "tree_walk %a%a %a = %a %a" ctxt cfg.context
            term t (D.list term) stk term t' (D.list term) stk';
        Stdlib.incr steps; whnf_stk cfg t' stk'
    end
  | (Vari x, stk) as r ->
    begin match VarMap.find_opt x cfg.varmap with
    | Some v -> Stdlib.incr steps; whnf_stk cfg v stk
    | None -> r
    end
  | r -> r

(** {b NOTE} that in {!val:tree_walk} matching with trees involves two
    collections of terms.
    1. The argument stack [stk] of type {!type:stack} which contains the terms
       that are matched against the decision tree.
    2. An array [vars] containing subterms of the argument stack [stk] that
       are filtered by a pattern variable. These terms may be used for
       non-linearity or free-variable checks, or may be bound in the RHS.

    The [bound] array is similar to the [vars] array except that it is used to
    save terms with free variables. *)

(** {b NOTE} in the {!val:tree_walk} function, bound variables involve three
    elements:
    1. a {!constructor:Term.term.Abst} which introduces the bound variable in
       the term;
    2. a {!constructor:Term.term.Vari} which is the bound variable previously
       introduced;
    3. a {!constructor:Tree_type.TC.t.Vari} which is a simplified
       representation of a variable for trees. *)

(** [tree_walk cfg dt stk] tries to apply a rewrite rule by matching the stack
    [stk] against the decision tree [dt].  The resulting state of the abstract
    machine is returned in case of success.  Even if matching fails, the stack
    [stk] may be imperatively updated since a reduction step taken in elements
    of the stack is preserved (this is done using
    {!constructor:Term.term.TRef}). *)
and tree_walk : config -> dtree -> stack -> (term * stack) option =
  fun cfg tree stk ->
  let (lazy capacity, lazy tree) = tree in
  let vars = Array.make capacity mk_Kind in (* dummy terms *)
  let bound = Array.make capacity TE_None in
  (* [walk tree stk cursor vars_id id_vars] where [stk] is the stack of terms
     to match and [cursor] the cursor indicating where to write in the [vars]
     array described in {!module:Term} as the environment of the RHS during
     matching. [vars_id] maps the free variables contained in the term to the
     indexes defined during tree build, and [id_vars] is the inverse mapping
     of [vars_id]. *)
  let rec walk tree stk cursor vars_id id_vars =
    let open Tree_type in
    match tree with
    | Fail -> None
    | Leaf(rhs_subst, (act, xvars)) -> (* Apply the RHS substitution *)
        (* Allocate an environment where to place terms coming from the
           pattern variables for the action. *)
        let env_len = Bindlib.mbinder_arity act in
        assert (List.length rhs_subst = env_len - xvars);
        let env = Array.make env_len TE_None in
        (* Retrieve terms needed in the action from the [vars] array. *)
        let f (pos, (slot, xs)) =
          match bound.(pos) with
          | TE_Vari(_) -> assert false
          | TE_Some(_) -> env.(slot) <- bound.(pos)
          | TE_None    ->
              if Array.length xs = 0 then
                let t = unfold vars.(pos) in
                let b = Bindlib.raw_mbinder [||] [||] 0 of_tvar (fun _ -> t)
                in env.(slot) <- TE_Some(b)
              else
                let xs = Array.map (fun e -> IntMap.find e id_vars) xs in
                env.(slot) <- TE_Some(binds xs lift vars.(pos))
        in
        List.iter f rhs_subst;
        (* Complete the array with fresh meta-variables if needed. *)
        for i = env_len - xvars to env_len - 1 do
          let b =
            Bindlib.raw_mbinder [||] [||] 0 of_tvar (fun _ -> mk_Plac false)
          in
          env.(i) <- TE_Some(b)
        done;
        Some (Bindlib.msubst act env, stk)
    | Cond({ok; cond; fail})                              ->
        let next =
          match cond with
          | CondNL(i, j) ->
            if eq_modulo whnf cfg vars.(i) vars.(j) then ok else fail
          | CondFV(i,xs) ->
              let allowed =
                (* Variables that are allowed in the term. *)
                let fn id =
                  try IntMap.find id id_vars with Not_found -> assert false
                in
                Array.map fn xs
              in
              let forbidden =
                (* Term variables forbidden in the term. *)
                IntMap.filter (fun id _ -> not (Array.mem id xs)) id_vars
              in
              (* Ensure there are no variables from [forbidden] in [b]. *)
              let no_forbidden b =
                not (IntMap.exists (fun _ x -> Bindlib.occur x b) forbidden)
              in
              (* We first attempt to match [vars.(i)] directly. *)
              let b = Bindlib.bind_mvar allowed (lift vars.(i)) in
              if no_forbidden b
              then (bound.(i) <- TE_Some(Bindlib.unbox b); ok) else
              (* As a last resort we try matching the SNF. *)
              let b = Bindlib.bind_mvar allowed
                        (lift (snf (whnf cfg) vars.(i))) in
              if no_forbidden b
              then (bound.(i) <- TE_Some(Bindlib.unbox b); ok)
              else fail
        in
        walk next stk cursor vars_id id_vars
    | Eos(l, r)                                                    ->
        let next = if stk = [] then l else r in
        walk next stk cursor vars_id id_vars
    | Node({swap; children; store; abstraction; default; product}) ->
        match List.destruct stk swap with
        | exception Not_found     -> None
        | (left, examined, right) ->
        if TCMap.is_empty children && abstraction = None && product = None
        (* If there is no specialisation tree, try directly default case. *)
        then
          let fn t =
            let cursor =
              if store then (vars.(cursor) <- examined; cursor + 1)
              else cursor
            in
            let stk = List.reconstruct left [] right in
            walk t stk cursor vars_id id_vars
          in
          Option.bind default fn
        else
          let s = Stdlib.(!steps) in
          let (t, args) = whnf_stk cfg examined [] in
          let args = if store then List.map to_tref args else args in
          (* If some reduction has been performed by [whnf_stk] ([steps <>
             0]), update the value of [examined] which may be stored into
             [vars]. *)
          if Stdlib.(!steps) <> s then
            begin
              match examined with
              | TRef(v) -> v := Some(add_args t args)
              | _       -> ()
            end;
          let cursor =
            if store then (vars.(cursor) <- add_args t args; cursor + 1)
            else cursor
          in
          (* [default ()] carries on the matching on the default branch of the
             tree. Nothing is added to the stack. *)
          let default () =
            let fn d =
              let stk = List.reconstruct left [] right in
              walk d stk cursor vars_id id_vars
            in
            Option.bind default fn
          in
          (* [walk_binder a  b  id tr]  matches  on  binder  [b]  of type  [a]
             introducing variable  [id] and branching  on tree [tr].  The type
             [a] and [b] substituted are re-inserted in the stack.*)
          let walk_binder a b id tr =
            let (bound, body) = Bindlib.unbind b in
            let vars_id = VarMap.add bound id vars_id in
            let id_vars = IntMap.add id bound id_vars in
            let stk = List.reconstruct left (a::body::args) right in
            walk tr stk cursor vars_id id_vars
          in
          match t with
          | Type       ->
              begin
                try
                  let matched = TCMap.find TC.Type children in
                  let stk = List.reconstruct left args right in
                  walk matched stk cursor vars_id id_vars
                with Not_found -> default ()
              end
          | Symb(s)    ->
              let cons = TC.Symb(s.sym_path, s.sym_name, List.length args) in
              begin
                try
                  (* Get the next sub-tree. *)
                  let matched = TCMap.find cons children in
                  (* Re-insert the arguments the symbol is applied to in the
                     stack. *)
                  let stk = List.reconstruct left args right in
                  walk matched stk cursor vars_id id_vars
                with Not_found -> default ()
              end
          | Vari(x)    ->
              begin
                try
                  let id = VarMap.find x vars_id in
                  let matched = TCMap.find (TC.Vari(id)) children in
                  (* Re-insert the arguments the variable is applied to in the
                     stack. *)
                  let stk = List.reconstruct left args right in
                  walk matched stk cursor vars_id id_vars
                with Not_found -> default ()
              end
          | Abst(a, b) ->
              begin
                match abstraction with
                | None        -> default ()
                | Some(id,tr) -> walk_binder a b id tr
              end
          | Prod(a, b) ->
              begin
                match product with
                | None        -> default ()
                | Some(id,tr) -> walk_binder a b id tr
              end
          | Kind
          | Patt _
          | Meta(_, _) -> default ()
          | Plac _     -> assert false
             (* Should not appear in typechecked terms. *)
          | TRef(_)    -> assert false (* Should be reduced by [whnf_stk]. *)
          | Appl(_)    -> assert false (* Should be reduced by [whnf_stk]. *)
          | LLet(_)    -> assert false (* Should be reduced by [whnf_stk]. *)
          | TEnv(_)    -> assert false (* Should not appear in terms. *)
          | Wild       -> assert false (* Should not appear in terms. *)
  in
  walk tree stk 0 VarMap.empty IntMap.empty

(** {1 Define exposed functions}
    that take optional arguments rather than a config. *)

type reducer = ?tags:rw_tag list -> ctxt -> term -> term

let time_reducer (f: reducer): reducer =
  let open Stdlib in let r = ref mk_Kind in fun ?tags cfg t ->
    Debug.(record_time Rewriting (fun () -> r := f ?tags cfg t)); !r

(** [snf ~dtree c t] computes a snf of [t], unfolding the variables defined in
    the context [c]. The function [dtree] maps symbols to dtrees. *)
let snf : ?dtree:(sym -> dtree) -> reducer = fun ?dtree ?tags c t ->
  Stdlib.(steps := 0);
  let u = snf (whnf (Config.make ?dtree ?tags c)) t in
  let r = if Stdlib.(!steps = 0) then unfold t else u in
  (*if Logger.log_enabled () then
    log_eval "snf %a%a\n= %a" ctxt cfg term t term r;*) r

let snf ?dtree = time_reducer (snf ?dtree)

(** [hnf c t] computes a hnf of [t], unfolding the variables defined in the
    context [c], and using user-defined rewrite rules. *)
let hnf : reducer = fun ?tags c t ->
  Stdlib.(steps := 0);
  let u = hnf (whnf (Config.make ?tags c)) t in
  let r = if Stdlib.(!steps = 0) then unfold t else u in
  (*if Logger.log_enabled () then
    log_eval "hnf %a%a\n= %a" ctxt cfg term t term r;*) r

let hnf = time_reducer hnf

(** [eq_modulo c a b] tests the convertibility of [a] and [b] in context
    [c]. WARNING: may have side effects in TRef's introduced by whnf. *)
let eq_modulo : ?tags:rw_tag list -> ctxt -> term -> term -> bool =
  fun ?tags c -> eq_modulo whnf (Config.make ?tags c)

let eq_modulo =
  let open Stdlib in let r = ref false in fun ?tags c t u ->
  Debug.(record_time Rewriting (fun () -> r := eq_modulo ?tags c t u)); !r

(** [pure_eq_modulo c a b] tests the convertibility of [a] and [b] in context
    [c] with no side effects. *)
let pure_eq_modulo : ?tags:rw_tag list -> ctxt -> term -> term -> bool =
  fun ?tags c a b ->
  Timed.pure_test (fun (c,a,b) -> eq_modulo ?tags c a b) (c,a,b)

(** [whnf c t] computes a whnf of [t], unfolding the variables defined in the
   context [c], and using user-defined rewrite rules if [~rewrite]. *)
let whnf : reducer = fun ?tags c t ->
  Stdlib.(steps := 0);
  let u = whnf (Config.make ?tags c) t in
  let r = if Stdlib.(!steps = 0) then unfold t else u in
  (*if Logger.log_enabled () then
    log_eval "whnf %a%a\n= %a" ctxt c term t term r;*)
  r

let whnf = time_reducer whnf

(** [simplify c t] computes a beta whnf of [t] in context [c] belonging to the
    set S such that (1) terms of S are in beta whnf normal format, (2) if [t]
    is a product, then both its domain and codomain are in S. *)
let simplify : ctxt -> term -> term = fun c ->
  let tags = [`NoRw; `NoExpand ] in
  let rec simp t =
    match get_args (whnf ~tags c t) with
    | Prod(a,b), _ ->
        let x, b = Bindlib.unbind b in mk_Prod (simp a, bind x lift (simp b))
    | h, ts -> add_args_map h (whnf ~tags c) ts
  in simp

let simplify =
  let open Stdlib in let r = ref mk_Kind in fun c t ->
  Debug.(record_time Rewriting (fun () -> r := simplify c t)); !r

(** If [s] is a non-opaque symbol having a definition, [unfold_sym s t]
   replaces in [t] all the occurrences of [s] by its definition. *)
let unfold_sym : sym -> term -> term =
  let unfold_sym : sym -> (term list -> term) -> term -> term =
    fun s unfold_sym_app ->
    let rec unfold_sym t =
      let h, args = get_args t in
      let args = List.map unfold_sym args in
      match h with
      | Symb s' when s' == s -> unfold_sym_app args
      | _ ->
          let h =
            match h with
            | Abst(a,b) -> mk_Abst(unfold_sym a, unfold_sym_binder b)
            | Prod(a,b) -> mk_Prod(unfold_sym a, unfold_sym_binder b)
            | Meta(m,ts) -> mk_Meta(m, Array.map unfold_sym ts)
            | LLet(a,t,u) ->
                mk_LLet(unfold_sym a, unfold_sym t, unfold_sym_binder u)
            | _ -> h
          in add_args h args
    and unfold_sym_binder b =
      let x, b = Bindlib.unbind b in bind x lift (unfold_sym b)
    in unfold_sym
  in
  fun s ->
  if !(s.sym_opaq) then fun t -> t else
  match !(s.sym_def) with
  | Some d -> unfold_sym s (add_args d)
  | None ->
  match !(s.sym_rules) with
  | [] -> fun t -> t
  | _ ->
      let cfg = Config.make [] and dt = !(s.sym_dtree) in
      let unfold_sym_app args =
        match tree_walk cfg dt args with
        | Some(r,ts) -> add_args r ts
        | None -> add_args (mk_Symb s) args
      in unfold_sym s unfold_sym_app

(** Dedukti evaluation strategies. *)
type strategy =
  | WHNF (** Reduce to weak head-normal form. *)
  | HNF  (** Reduce to head-normal form. *)
  | SNF  (** Reduce to strong normal form. *)
  | NONE (** Do nothing. *)

type strat =
  { strategy : strategy   (** Evaluation strategy. *)
  ; steps    : int option (** Max number of steps if given. *) }

(** [eval cfg c t] evaluates the term [t] in the context [c] according to
    evaluation configuration [cfg]. *)
let eval : strat -> ctxt -> term -> term = fun s c t ->
  match s.strategy, s.steps with
  | _, Some 0
  | NONE, _ -> t
  | WHNF, None -> whnf c t
  | SNF, None -> snf c t
  | HNF, None -> hnf c t
  (* TODO implement the rest. *)
  | _, Some _ -> wrn None "Number of steps not supported."; t
OCaml

Innovation. Community. Security.