package lacaml

  1. Overview
  2. Docs

Source file impl2_C.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
(* File: impl_CZ.ml

   Copyright (C) 2005-

     Egbert Ammicht
     email: eammicht@lucent.com

     Markus Mottl
     email: markus.mottl@gmail.com
     WWW: http://www.ocaml.info

     Liam Stewart
     email: liam@cs.toronto.edu
     WWW: http://www.cs.toronto.edu/~liam

     Oleg Trott
     email: ot14@columbia.edu
     WWW: http://www.columbia.edu/~ot14

     Florent Hoareau
     email: h.florent@gmail.com
     WWW: none

   This library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   This library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with this library; if not, write to the Free Software
   Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
*)

open Printf
open Bigarray
open Complex
open Complex32
open Common
open Utils
open Impl4_C

module Vec = Vec4_C
module Mat = Mat4_C

module RVec = Vec4_S

(* BLAS-1 interface *)

external direct_dotu :
  n : (int [@untagged]) ->
  ofsx : (int [@untagged]) ->
  incx : (int [@untagged]) ->
  x : vec ->
  ofsy : (int [@untagged]) ->
  incy : (int [@untagged]) ->
  y : vec ->
  Complex.t = "lacaml_Cdotu_stub_bc" "lacaml_Cdotu_stub"

external direct_dotc :
  n : (int [@untagged]) ->
  ofsx : (int [@untagged]) ->
  incx : (int [@untagged]) ->
  x : vec ->
  ofsy : (int [@untagged]) ->
  incy : (int [@untagged]) ->
  y : vec ->
  Complex.t = "lacaml_Cdotc_stub_bc" "lacaml_Cdotc_stub"

let gen_dot loc dot_fun = (); fun ?n ?ofsx ?incx x ?ofsy ?incy y ->
  let ofsx, incx = get_vec_geom loc x_str ofsx incx in
  let ofsy, incy = get_vec_geom loc y_str ofsy incy in
  let n = get_dim_vec loc x_str ofsx incx x n_str n in
  check_vec loc y_str y (ofsy + (n - 1) * abs incy);
  dot_fun ~n ~ofsx ~incx ~x ~ofsy ~incy ~y

let dotu = gen_dot "Lacaml.C.dotu" direct_dotu
let dotc = gen_dot "Lacaml.C.dotc" direct_dotc


(* Auxiliary routines *)

external direct_lansy :
  norm : char ->
  uplo : char ->
  n : (int [@untagged]) ->
  ar : (int [@untagged]) ->
  ac : (int [@untagged]) ->
  a : mat ->
  work : rvec ->
  (float [@unboxed]) = "lacaml_Clansy_stub_bc" "lacaml_Clansy_stub"

let lansy_min_lwork n = function `I -> n | _ -> 0

let lansy ?n ?(up = true) ?(norm = `O) ?work ?(ar = 1) ?(ac = 1) a =
  let loc = "Lacaml.C.lansy" in
  let n = get_n_of_a loc ar ac a n in
  let uplo = get_uplo_char up in
  let min_work = lansy_min_lwork n norm in
  let work, _lwork = get_work loc RVec.create work min_work min_work "lwork" in
  let norm = get_norm_char norm in
  direct_lansy ~norm ~uplo ~n ~ar ~ac ~a ~work


(* Linear equations (computational routines) *)

(* GECON *)

external direct_gecon :
  n : (int [@untagged]) ->
  ar : (int [@untagged]) ->
  ac : (int [@untagged]) ->
  a : mat ->
  work : vec ->
  rwork : rvec ->
  norm : char ->
  anorm : (float [@unboxed]) ->
  int * float = "lacaml_Cgecon_stub_bc" "lacaml_Cgecon_stub"

let gecon_min_lwork n = 2 * n

let gecon_min_lrwork n = 2 * n

let gecon ?n ?(norm = `O) ?anorm ?work ?rwork ?(ar = 1) ?(ac = 1) a =
  let loc = "Lacaml.C.gecon" in
  let n = get_n_of_a loc ar ac a n in
  let work, _lwork =
    get_work
      loc Vec.create work (gecon_min_lwork n) (gecon_min_lwork n) "lwork" in
  let rwork, _lrwork =
    get_work
      loc RVec.create rwork
      (gecon_min_lrwork n) (gecon_min_lrwork n) "lrwork" in
  let anorm =
    match anorm with
    | None -> lange ~norm:(norm :> norm4) ~m:n ~n ~work:rwork a
    | Some anorm -> anorm
  in
  let norm = get_norm_char norm in
  let info, rcond = direct_gecon ~n ~ar ~ac ~a ~work ~rwork ~norm ~anorm in
  if info = 0 then rcond
  else gecon_err loc norm n a info

(* SYCON *)

external direct_sycon :
  uplo : char ->
  n : (int [@untagged]) ->
  ar : (int [@untagged]) ->
  ac : (int [@untagged]) ->
  a : mat ->
  ipiv : int32_vec ->
  work : vec ->
  anorm : (float [@unboxed]) ->
  int * float = "lacaml_Csycon_stub_bc" "lacaml_Csycon_stub"

let sycon_min_lwork n = 2 * n

let sycon ?n ?(up = true) ?ipiv ?anorm ?work ?(ar = 1) ?(ac = 1) a =
  let loc = "Lacaml.C.sycon" in
  let n = get_n_of_a loc ar ac a n in
  let uplo = get_uplo_char up in
  let work, _lwork =
    get_work
      loc Vec.create work (sycon_min_lwork n) (sycon_min_lwork n) "lwork" in
  let ipiv =
    if ipiv = None then sytrf ~n ~up ~work ~ar ~ac a
    else sytrf_get_ipiv loc ipiv n in
  let anorm =
    match anorm with
    | None -> lange ~m:n ~n ~ar ~ac a
    | Some anorm -> anorm in
  let info, rcond = direct_sycon ~uplo ~n ~ar ~ac ~a ~ipiv ~work ~anorm in
  if info = 0 then rcond
  else xxcon_err loc n a info

(* POCON *)

external direct_pocon :
  uplo : char ->
  n : (int [@untagged]) ->
  ar : (int [@untagged]) ->
  ac : (int [@untagged]) ->
  a : mat ->
  work : vec ->
  rwork : rvec ->
  anorm : (float [@unboxed]) ->
  int * float = "lacaml_Cpocon_stub_bc" "lacaml_Cpocon_stub"

let pocon_min_lwork n = 3 * n

let pocon_min_lrwork n = n

let pocon ?n ?(up = true) ?anorm ?work ?rwork ?(ar = 1) ?(ac = 1) a =
  let loc = "Lacaml.C.pocon" in
  let n = get_n_of_a loc ar ac a n in
  let uplo = get_uplo_char up in
  let min_lwork, min_lrwork = pocon_min_lwork n, pocon_min_lrwork n in
  let work, _lwork =
    get_work loc Vec.create work min_lwork min_lwork "lwork" in
  let rwork, _lrwork =
    get_work loc RVec.create rwork min_lrwork min_lrwork "lrwork" in
  let anorm =
    match anorm with
    | None -> lange ~m:n ~n ~ar ~ac a
    | Some anorm -> anorm in
  let info, rcond = direct_pocon ~uplo ~n ~ar ~ac ~a ~work ~rwork ~anorm in
  if info = 0 then rcond
  else xxcon_err loc n a info


(* General Schur factorization *)

(* GEES *)

external direct_gees :
  jobvs : char ->
  sort : char ->
  select : (int [@untagged]) ->
  select_fun : (Complex.t -> bool) ->
  n : (int [@untagged]) ->
  ar : (int [@untagged]) ->
  ac : (int [@untagged]) ->
  a : mat ->
  w : vec ->
  vsr : (int [@untagged]) ->
  vsc : (int [@untagged]) ->
  vs : mat ->
  work : vec ->
  lwork : (int [@untagged]) ->
  rwork : rvec ->
  bwork : int32_vec
  -> int * int = "lacaml_Cgees_stub_bc" "lacaml_Cgees_stub"
  (* result : (SDIM, INFO) *)

external init_gees : unit -> unit = "lacaml_Cinit_gees"

let () = init_gees ()

let gees_get_opt_lwork
      ~loc ~jobvs ~sort ~select ~select_fun ~n
      ~ar ~ac ~a ~w ~vsr ~vsc ~vs ~rwork ~bwork =
  let lwork = -1 in
  let work = Vec.create 1 in
  let _, info =
    direct_gees ~jobvs ~sort ~select ~select_fun ~n ~ar ~ac ~a
      ~w ~vsr ~vsc ~vs ~work ~lwork ~rwork ~bwork
  in
  if info = 0 then int_of_float work.{1}.re
  else gees_err loc n info jobvs sort

let gees
    ?n
    ?(jobvs = `Compute_Schur_vectors)
    ?(sort = `No_sort)
    ?w
    ?(vsr = 1)
    ?(vsc = 1)
    ?vs
    ?work
    ?(ar = 1)
    ?(ac = 1)
    a =
  let loc = "Lacaml.C.gees" in
  let jobvs, sort_char, select, select_fun, n, vs, w =
    gees_get_params_complex
      loc Vec.create Mat.create Mat.empty jobvs sort n ar ac a w vsr vsc vs
  in
  let bwork =
    match sort with
    | `No_sort -> empty_int32_vec
    | _ -> create_int32_vec n
  in
  let rwork = RVec.create n in
  let work, lwork =
    match work with
    | Some work -> work, Array1.dim work
    | None ->
        let lwork =
          gees_get_opt_lwork ~loc ~jobvs ~sort:sort_char ~select ~select_fun
            ~n ~ar ~ac ~a ~w ~vsr ~vsc ~vs ~rwork ~bwork
        in
        Vec.create lwork, lwork
  in
  let sdim, info =
    direct_gees ~jobvs ~sort:sort_char ~select ~select_fun
      ~n ~ar ~ac ~a ~w ~vsr ~vsc ~vs ~work ~lwork ~rwork ~bwork
  in
  if info = 0 then sdim, w, vs
  else gees_err loc n info jobvs sort_char


(* General SVD routines *)

(* GESVD *)

external direct_gesvd :
  jobu : char ->
  jobvt : char ->
  m : (int [@untagged]) ->
  n : (int [@untagged]) ->
  ar : (int [@untagged]) ->
  ac : (int [@untagged]) ->
  a : mat ->
  s : rvec ->
  ur : (int [@untagged]) ->
  uc : (int [@untagged]) ->
  u : mat ->
  vtc : (int [@untagged]) ->
  vtr : (int [@untagged]) ->
  vt : mat ->
  work : vec ->
  lwork : (int [@untagged]) ->
  rwork : rvec ->
  (int [@untagged]) = "lacaml_Cgesvd_stub_bc" "lacaml_Cgesvd_stub"

let gesvd_min_lwork ~m ~n =
  let min_m_n = min m n in
  max 1 (min_m_n + min_m_n + max m n)

let gesvd_lrwork ~m ~n = 5 * min m n

let gesvd_get_opt_lwork loc jobu jobvt m n ar ac a s ur uc u vtr vtc vt =
  let lwork = -1 in
  let work = Vec.create 1 in
  let info =
    direct_gesvd
      ~jobu ~jobvt ~m ~n ~ar ~ac ~a ~s ~ur ~uc ~u ~vtr ~vtc ~vt
      ~work ~lwork ~rwork:RVec.empty
  in
  if info = 0 then Float32.int_of_float32 work.{1}.re
  else gesvd_err loc jobu jobvt m n a u vt lwork info

let gesvd_opt_lwork
    ?m ?n
    ?(jobu = `A) ?(jobvt = `A) ?s
    ?(ur = 1) ?(uc = 1) ?u
    ?(vtr = 1) ?(vtc = 1) ?vt ?(ar = 1) ?(ac = 1) a =
  let loc = "Lacaml.C.gesvd_opt_lwork" in
  let jobu, jobvt, m, n, s, u, vt =
    gesvd_get_params
      loc RVec.create Mat.create jobu jobvt m n ar ac a s ur uc u vtr vtc vt in
  gesvd_get_opt_lwork loc jobu jobvt m n ar ac a s ur uc u vtr vtc vt

let gesvd
    ?m ?n
    ?(jobu = `A) ?(jobvt = `A) ?s
    ?(ur = 1) ?(uc = 1) ?u
    ?(vtr = 1) ?(vtc = 1) ?vt ?work ?rwork ?(ar = 1) ?(ac = 1) a =
  let loc = "Lacaml.C.gesvd" in
  let jobu, jobvt, m, n, s, u, vt =
    gesvd_get_params
      loc RVec.create Mat.create jobu jobvt m n ar ac a s ur uc u vtr vtc vt in
  let work, lwork =
    match work with
    | Some work -> work, Array1.dim work
    | None ->
        let lwork =
          gesvd_get_opt_lwork
            loc jobu jobvt m n ar ac a s ur uc u vtr vtc vt in
        Vec.create lwork, lwork in
  let rwork =
    match rwork with
    | None -> RVec.create (gesvd_lrwork ~m ~n)
    | Some rwork ->
        let lrwork = Array1.dim rwork in
        let min_lrwork = gesvd_lrwork ~m ~n in
        if lrwork < min_lrwork then
          invalid_arg
            (sprintf "%s: lrwork: valid=[%d..[ got=%d" loc min_lrwork lrwork)
        else rwork in
  let info =
    direct_gesvd
      ~jobu ~jobvt ~m ~n ~ar ~ac ~a ~s ~ur ~uc ~u ~vtc ~vtr ~vt
      ~work ~lwork ~rwork
  in
  if info = 0 then s, u, vt
  else gesvd_err loc jobu jobvt m n a u vt lwork info


(* General eigenvalue problem (simple drivers) *)

(* GEEV error handler *)

let geev_err loc min_work a n vl vr lwork err =
  if err > 0 then
    let msg =
      sprintf "\
        %s: The QR algorithm failed to compute all the eigenvalues, and\n\
        no eigenvectors have been computed; elements %d:%d of WR and WI\n\
        contain eigenvalues which have converged" loc (err + 1) n in
    failwith msg
  else
    let msg =
      match err with
      | -3 -> sprintf "n: valid=[0..[ got=%d" n
      | -5 -> sprintf "dim1(a): valid=[%d..[ got=%d" (max 1 n) (Array2.dim1 a)
      | -8 -> sprintf "dim1(vl): valid=[%d..[ got=%d" (max 1 n) (Array2.dim1 vl)
      | -10-> sprintf "dim1(vr): valid=[%d..[ got=%d" (max 1 n) (Array2.dim1 vr)
      | -12 -> sprintf "dim(work): valid=[%d..[ got=%d" (min_work n) lwork
      | n -> raise (InternalError (sprintf "%s: error code %d" loc n)) in
    invalid_arg (sprintf "%s: %s" loc msg)

(* GEEV *)

external direct_geev :
  ar : (int [@untagged]) ->
  ac : (int [@untagged]) ->
  a : mat ->
  n : (int [@untagged]) ->
  ofsw : (int [@untagged]) -> w : vec ->
  vlr : (int [@untagged]) ->
  vlc : (int [@untagged]) ->
  vl : mat ->
  jobvl : char ->
  vrr : (int [@untagged]) ->
  vrc : (int [@untagged]) ->
  vr : mat ->
  jobvr : char ->
  work : vec ->
  lwork : (int [@untagged]) ->
  rwork : vec ->
  (int [@untagged]) = "lacaml_Cgeev_stub_bc" "lacaml_Cgeev_stub"

let geev_min_lwork n = max 1 (n + n)
let geev_min_lrwork n = n + n

let geev_get_opt_lwork loc n vlr vlc vl jobvl vrr vrc vr jobvr ofsw w ar ac a =
  let work = Vec.create 1 in
  let info =
    direct_geev ~ar ~ac ~a ~n ~ofsw ~w ~vlr ~vlc ~vl ~jobvl
    ~vrr ~vrc ~vr ~jobvr ~work ~lwork:~-1 ~rwork:Vec.empty
  in
  if info = 0 then int_of_float work.{1}.re
  else geev_err loc geev_min_lwork a n vl vr ~-1 info

let geev_get_params loc ar ac a n vlr vlc vl vrr vrc vr ofsw w =
  let n, _, _, _, _, _, _, _, _, _ as params =
    geev_gen_get_params
      loc Mat.empty Mat.create ar ac a n vlr vlc vl vrr vrc vr in
  params, xxev_get_wx Vec.create loc w_str ofsw w n

let geev_opt_lwork
    ?n
    ?(vlr = 1) ?(vlc = 1) ?vl
    ?(vrr = 1) ?(vrc = 1) ?vr
    ?(ofsw = 1) ?w
    ?(ar = 1) ?(ac = 1) a =
  let loc = "Lacaml.C.geev_opt_lwork" in
  let (n, vlr, vlc, vl, jobvl, vrr, vrc, vr, jobvr, _), w =
    geev_get_params loc ar ac a n vlr vlc vl vrr vrc vr ofsw w
  in
  geev_get_opt_lwork loc n vlr vlc vl jobvl vrr vrc vr jobvr ofsw w ar ac a

let geev
    ?n ?work ?rwork
    ?(vlr = 1) ?(vlc = 1) ?vl
    ?(vrr = 1) ?(vrc = 1) ?vr
    ?(ofsw = 1) ?w
    ?(ar = 1) ?(ac = 1) a =
  let loc = "Lacaml.C.geev" in
  let (n, vlr, vlc, vl, jobvl, vrr, vrc, vr, jobvr, _), w =
    geev_get_params loc ar ac a n vlr vlc vl vrr vrc vr ofsw w in

  let work, lwork =
    match work with
    | Some work ->
        let lwork = Array1.dim work in
        let min_lwork = geev_min_lwork n in
        if lwork < min_lwork then
          invalid_arg
            (sprintf "%s: lwork: valid=[%d..[ got=%d" loc min_lwork lwork)
        else work, lwork
    | None ->
        let lwork =
          geev_get_opt_lwork loc n vlr vlc vl jobvl vrr vrc vr jobvr
            ofsw w ar ac a in
        Vec.create lwork, lwork in

  let rwork =
    match rwork with
    | None -> Vec.create (geev_min_lrwork n)
    | Some rwork ->
        let lrwork = Array1.dim rwork in
        let min_lrwork = geev_min_lrwork n in
        if lrwork < min_lrwork then
          invalid_arg
            (sprintf "%s: lrwork: valid=[%d..[ got=%d" loc min_lrwork lrwork)
        else rwork in

  let info =
    direct_geev
      ~ar ~ac ~a ~n ~ofsw ~w ~vlr ~vlc ~vl ~jobvl
      ~vrr ~vrc ~vr ~jobvr ~work ~lwork ~rwork
  in

  if info = 0 then vl, w, vr
  else geev_err loc geev_min_lwork a n vl vr lwork info
OCaml

Innovation. Community. Security.