Source file generate.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
open! Stdlib
let debug = Debug.find "gen"
let times = Debug.find "times"
open Code
module J = Javascript
let string_of_set s =
String.concat ~sep:", " (List.map ~f:Addr.to_string (Addr.Set.elements s))
let rec list_group_rec ~equal f g l b m n =
match l with
| [] -> List.rev ((b, List.rev m) :: n)
| a :: r ->
let fa = f a in
if equal fa b
then list_group_rec ~equal f g r b (g a :: m) n
else list_group_rec ~equal f g r fa [ g a ] ((b, List.rev m) :: n)
let list_group ~equal f g l =
match l with
| [] -> []
| a :: r -> list_group_rec ~equal f g r (f a) [ g a ] []
type fall_through =
| Block of Addr.t
| Return
type application_description =
{ arity : int
; exact : bool
; trampolined : bool
}
module Share = struct
module AppMap = Map.Make (struct
type t = application_description
let compare = Poly.compare
end)
type 'a aux =
{ byte_strings : 'a StringMap.t
; utf_strings : 'a StringMap.t
; applies : 'a AppMap.t
; prims : 'a StringMap.t
}
let empty_aux =
{ prims = StringMap.empty
; byte_strings = StringMap.empty
; utf_strings = StringMap.empty
; applies = AppMap.empty
}
type t =
{ count : int aux
; mutable vars : J.ident aux
; alias_prims : bool
; alias_strings : bool
; alias_apply : bool
}
let add_byte_string s t =
let n = try StringMap.find s t.byte_strings with Not_found -> 0 in
{ t with byte_strings = StringMap.add s (n + 1) t.byte_strings }
let add_utf_string s t =
let n = try StringMap.find s t.utf_strings with Not_found -> 0 in
{ t with utf_strings = StringMap.add s (n + 1) t.utf_strings }
let add_prim s t =
let n = try StringMap.find s t.prims with Not_found -> 0 in
if n < 0 then t else { t with prims = StringMap.add s (n + 1) t.prims }
let add_special_prim_if_exists s t =
if Primitive.exists s then { t with prims = StringMap.add s (-1) t.prims } else t
let add_apply i t =
let n = try AppMap.find i t.applies with Not_found -> 0 in
{ t with applies = AppMap.add i (n + 1) t.applies }
let add_code_string s share =
let share =
if String.is_ascii s then add_utf_string s share else add_byte_string s share
in
if Config.Flag.use_js_string ()
then share
else add_prim "caml_string_of_jsbytes" share
let add_code_native_string (s : Code.Native_string.t) share =
match s with
| Utf (Utf8 s) -> add_utf_string s share
| Byte s -> add_byte_string s share
let rec get_constant c t =
match c with
| String s -> add_code_string s t
| NativeString s -> add_code_native_string s t
| Tuple (_, args, _) -> Array.fold_left args ~init:t ~f:(fun t c -> get_constant c t)
| _ -> t
let add_args args t =
List.fold_left args ~init:t ~f:(fun t a ->
match a with
| Pc c -> get_constant c t
| _ -> t)
let get
~trampolined_calls
?alias_strings
?(alias_prims = false)
?(alias_apply = true)
{ blocks; _ } : t =
let alias_strings =
match alias_strings with
| None -> Config.Flag.use_js_string () && not (Config.Flag.share_constant ())
| Some x -> x
in
let count =
Addr.Map.fold
(fun _ block share ->
List.fold_left block.body ~init:share ~f:(fun share i ->
match i with
| Let (_, Constant c) -> get_constant c share
| Let (x, Apply { args; exact; _ }) ->
let trampolined = Var.Set.mem x trampolined_calls in
if (not exact) || trampolined
then add_apply { arity = List.length args; exact; trampolined } share
else share
| Let (_, Special (Alias_prim name)) ->
let name = Primitive.resolve name in
let share =
if Primitive.exists name then add_prim name share else share
in
share
| Let (_, Prim (Extern name, args)) ->
let name = Primitive.resolve name in
let share =
if Primitive.exists name then add_prim name share else share
in
add_args args share
| Let (_, Prim (_, args)) -> add_args args share
| _ -> share))
blocks
empty_aux
in
let count =
List.fold_left
[ "caml_trampoline"
; "caml_trampoline_return"
; "caml_wrap_exception"
; "caml_list_of_js_array"
; "caml_maybe_attach_backtrace"
; "jsoo_effect_not_supported"
]
~init:count
~f:(fun acc x -> add_special_prim_if_exists x acc)
in
{ count; vars = empty_aux; alias_strings; alias_prims; alias_apply }
let get_byte_string gen s t =
if not t.alias_strings
then gen s
else
try
let c = StringMap.find s t.count.byte_strings in
if c > 1
then (
try J.EVar (StringMap.find s t.vars.byte_strings)
with Not_found ->
let x = Var.fresh_n (Printf.sprintf "cst_%s" s) in
let v = J.V x in
t.vars <- { t.vars with byte_strings = StringMap.add s v t.vars.byte_strings };
J.EVar v)
else gen s
with Not_found -> gen s
let get_utf_string gen s t =
if not t.alias_strings
then gen s
else
try
let c = StringMap.find s t.count.utf_strings in
if c > 1
then (
try J.EVar (StringMap.find s t.vars.utf_strings)
with Not_found ->
let x = Var.fresh_n (Printf.sprintf "cst_%s" s) in
let v = J.V x in
t.vars <- { t.vars with utf_strings = StringMap.add s v t.vars.utf_strings };
J.EVar v)
else gen s
with Not_found -> gen s
let get_prim gen s t =
let s = Primitive.resolve s in
if not t.alias_prims
then gen s
else
try
let c = StringMap.find s t.count.prims in
if c > 1 || c = -1
then (
try J.EVar (StringMap.find s t.vars.prims)
with Not_found ->
let x = Var.fresh_n s in
let v = J.V x in
t.vars <- { t.vars with prims = StringMap.add s v t.vars.prims };
J.EVar v)
else gen s
with Not_found -> gen s
let get_apply gen desc t =
if not t.alias_apply
then gen desc
else
try J.EVar (AppMap.find desc t.vars.applies)
with Not_found ->
let x =
let { arity; exact; trampolined } = desc in
Var.fresh_n
(Printf.sprintf
"caml_%scall%d"
(match exact, trampolined with
| true, false -> assert false
| true, true -> "cps_exact_"
| false, false -> ""
| false, true -> "cps_")
arity)
in
let v = J.V x in
t.vars <- { t.vars with applies = AppMap.add desc v t.vars.applies };
J.EVar v
end
module Ctx = struct
type t =
{ blocks : block Addr.Map.t
; live : Deadcode.variable_uses
; share : Share.t
; debug : Parse_bytecode.Debug.t
; exported_runtime : (Code.Var.t * bool ref) option
; should_export : bool
; effect_warning : bool ref
; trampolined_calls : Effects.trampolined_calls
; deadcode_sentinal : Var.t
; mutated_vars : Code.Var.Set.t Code.Addr.Map.t
; freevars : Code.Var.Set.t Code.Addr.Map.t
}
let initial
~warn_on_unhandled_effect
~exported_runtime
~should_export
~deadcode_sentinal
~mutated_vars
~freevars
blocks
live
trampolined_calls
share
debug =
{ blocks
; live
; share
; debug
; exported_runtime
; should_export
; effect_warning = ref (not warn_on_unhandled_effect)
; trampolined_calls
; deadcode_sentinal
; mutated_vars
; freevars
}
end
type edge_kind =
| Loop
| Exit_loop of bool ref
| Exit_switch of bool ref
| Forward
let var x = J.EVar (J.V x)
let int n = J.ENum (J.Num.of_targetint (Targetint.of_int_exn n))
let targetint n = J.ENum (J.Num.of_targetint n)
let to_int cx = J.EBin (J.Bor, cx, int 0)
let unsigned' x = J.EBin (J.Lsr, x, int 0)
let unsigned x =
let x =
match x with
| J.EBin (J.Bor, x, J.ENum maybe_zero) when J.Num.is_zero maybe_zero -> x
| _ -> x
in
let pos_int32 =
match x with
| J.ENum num -> ( try Targetint.(J.Num.to_targetint num >= zero) with _ -> false)
| _ -> false
in
if pos_int32 then x else unsigned' x
let one = J.ENum (J.Num.of_targetint Targetint.one)
let zero = J.ENum (J.Num.of_targetint Targetint.zero)
let plus_int x y =
match x, y with
| J.ENum y, x when J.Num.is_zero y -> x
| x, J.ENum y when J.Num.is_zero y -> x
| J.ENum x, J.ENum y -> J.ENum (J.Num.add x y)
| x, y -> J.EBin (J.Plus, x, y)
let bool e = J.ECond (e, one, zero)
let source_location ctx position pc =
match Parse_bytecode.Debug.find_loc ctx.Ctx.debug ~position pc with
| Some pi -> J.Pi pi
| None -> J.N
let float_const f = J.ENum (J.Num.of_float f)
let s_var name = J.EVar (J.ident (Utf8_string.of_string_exn name))
let runtime_fun ctx name =
match ctx.Ctx.exported_runtime with
| Some (runtime, runtime_needed) ->
runtime_needed := true;
let name = Utf8_string.of_string_exn name in
J.dot (J.EVar (J.V runtime)) name
| None -> s_var name
let str_js_byte s =
let b = Buffer.create (String.length s) in
String.iter s ~f:(function
| '\\' -> Buffer.add_string b "\\\\"
| '\128' .. '\255' as c ->
Buffer.add_string b "\\x";
Buffer.add_char_hex b c
| c -> Buffer.add_char b c);
let s = Buffer.contents b in
J.EStr (Utf8_string.of_string_exn s)
let str_js_utf8 s =
let b = Buffer.create (String.length s) in
String.iter s ~f:(function
| '\\' -> Buffer.add_string b "\\\\"
| c -> Buffer.add_char b c);
let s = Buffer.contents b in
J.EStr (Utf8_string.of_string_exn s)
let const_p = 0, Var.Set.empty
let mutable_p = 1, Var.Set.empty
let mutator_p = 2, Var.Set.empty
let flush_p = 3, Var.Set.empty
let or_p (p, s1) (q, s2) = max p q, Var.Set.union s1 s2
let is_mutable (p, _) = p >= fst mutable_p
let kind k =
match k with
| `Pure -> const_p
| `Mutable -> mutable_p
| `Mutator -> mutator_p
let ocaml_string ~ctx ~loc s =
if Config.Flag.use_js_string ()
then s
else
let p = Share.get_prim (runtime_fun ctx) "caml_string_of_jsbytes" ctx.Ctx.share in
J.call p [ s ] loc
let rec constant_rec ~ctx x level instrs =
match x with
| String s ->
let e =
if String.is_ascii s
then Share.get_utf_string str_js_byte s ctx.Ctx.share
else Share.get_byte_string str_js_byte s ctx.Ctx.share
in
let e = ocaml_string ~ctx ~loc:J.N e in
e, instrs
| NativeString s -> (
match s with
| Byte x -> Share.get_byte_string str_js_byte x ctx.Ctx.share, instrs
| Utf (Utf8 x) -> Share.get_utf_string str_js_utf8 x ctx.Ctx.share, instrs)
| Float f -> float_const f, instrs
| Float_array a ->
( Mlvalue.Array.make
~tag:Obj.double_array_tag
~args:(Array.to_list (Array.map a ~f:(fun x -> J.Element (float_const x))))
, instrs )
| Int64 i ->
let p =
Share.get_prim (runtime_fun ctx) "caml_int64_create_lo_mi_hi" ctx.Ctx.share
in
let lo = int (Int64.to_int i land 0xffffff)
and mi = int (Int64.to_int (Int64.shift_right i 24) land 0xffffff)
and hi = int (Int64.to_int (Int64.shift_right i 48) land 0xffff) in
J.call p [ lo; mi; hi ] J.N, instrs
| Tuple (tag, a, _) -> (
let constant_max_depth = Config.Param.constant_max_depth () in
let rec detect_list n acc = function
| Tuple (0, [| x; l |], _) -> detect_list (succ n) (x :: acc) l
| Int maybe_zero when Targetint.is_zero maybe_zero ->
if n > constant_max_depth then Some acc else None
| _ -> None
in
match detect_list 0 [] x with
| Some elts_rev ->
let elements, instrs =
List.fold_left elts_rev ~init:([], instrs) ~f:(fun (arr, instrs) elt ->
let js, instrs = constant_rec ~ctx elt level instrs in
js :: arr, instrs)
in
let p =
Share.get_prim (runtime_fun ctx) "caml_list_of_js_array" ctx.Ctx.share
in
J.call p [ J.array elements ] J.N, instrs
| None ->
let split = level = constant_max_depth in
let level = if split then 0 else level + 1 in
let l, instrs =
List.fold_left (Array.to_list a) ~init:([], instrs) ~f:(fun (l, instrs) cc ->
let js, instrs = constant_rec ~ctx cc level instrs in
js :: l, instrs)
in
let l, instrs =
if split
then
List.fold_left l ~init:([], instrs) ~f:(fun (acc, instrs) js ->
match js with
| J.EArr _ ->
let v = Code.Var.fresh_n "partial" in
let instrs =
(J.variable_declaration [ J.V v, (js, J.N) ], J.N) :: instrs
in
J.Element (J.EVar (J.V v)) :: acc, instrs
| _ -> J.Element js :: acc, instrs)
else List.map ~f:(fun x -> J.Element x) (List.rev l), instrs
in
Mlvalue.Block.make ~tag ~args:l, instrs)
| Int i -> targetint i, instrs
| Int32 _ | NativeInt _ ->
assert false
let constant ~ctx x level =
let expr, instr = constant_rec ~ctx x level [] in
expr, List.rev instr
type queue_elt =
{ prop : int
; ce : J.expression
; loc : J.location option
; deps : Code.Var.Set.t
}
let access_queue queue x =
try
let elt = List.assoc x queue in
((elt.prop, elt.deps), elt.ce, elt.loc), List.remove_assoc x queue
with Not_found -> ((fst const_p, Code.Var.Set.singleton x), var x, None), queue
let access_queue_loc queue loc' x =
let (prop, c, loc), queue = access_queue queue x in
(prop, c, Option.value ~default:loc' loc), queue
let should_flush (cond, _) prop = cond <> fst const_p && cond + prop >= fst flush_p
let flush_queue expr_queue prop loc (l : J.statement_list) =
let instrs, expr_queue =
if fst prop >= fst flush_p
then expr_queue, []
else List.partition ~f:(fun (_, elt) -> should_flush prop elt.prop) expr_queue
in
let instrs =
List.map instrs ~f:(fun (x, elt) ->
let loc = Option.value ~default:loc elt.loc in
J.variable_declaration [ J.V x, (elt.ce, loc) ], loc)
in
List.rev_append instrs l, expr_queue
let flush_all expr_queue loc l = fst (flush_queue expr_queue flush_p loc l)
let enqueue expr_queue prop x ce flush_loc expr_loc acc =
let instrs, expr_queue =
if Config.Flag.compact ()
then
if is_mutable prop
then flush_queue expr_queue prop flush_loc acc
else acc, expr_queue
else flush_queue expr_queue flush_p flush_loc acc
in
let prop, deps = prop in
instrs, (x, { prop; deps; ce; loc = expr_loc }) :: expr_queue
type queue = (Var.t * queue_elt) list
type prop = int * Code.Var.Set.t
module Expr_builder : sig
type 'a t
val ( let* ) : 'a t -> ('a -> 'b t) -> 'b t
val return : 'a -> 'a t
val access : Var.t -> J.expression t
val access' : ctx:Ctx.t -> prim_arg -> J.expression t
val info : ?need_loc:bool -> prop -> unit t
val statement_loc : J.location -> J.location t
val flush_all : queue -> J.location -> J.statement_list t -> J.statement_list
val flush_queue : queue -> J.location -> J.statement_list t -> J.statement_list * queue
val enqueue :
queue
-> Var.t
-> J.location
-> (J.expression * J.statement_list) t
-> J.statement_list * queue
val get : queue -> J.location -> 'a t -> 'a * J.location * queue
val list_map : ('a -> 'b t) -> 'a list -> 'b list t
end = struct
type state =
{ queue : queue
; prop : prop
; need_loc : bool
; loc : J.location option
}
type 'a t = state -> 'a * state
let ( let* ) (type a b) (e : a t) (f : a -> b t) : b t =
fun st ->
let v, st = e st in
f v st
let return x st = x, st
let info ?(need_loc = false) prop st =
(), { st with prop = or_p st.prop prop; need_loc = need_loc || st.need_loc }
let access x st =
let (prop, c, loc), queue = access_queue st.queue x in
( c
, { st with
prop = or_p st.prop prop
; queue
; loc =
(match st.loc with
| None -> loc
| _ -> st.loc)
} )
let access' ~ctx x =
match x with
| Pc c ->
let js, instrs = constant ~ctx c (Config.Param.constant_max_depth ()) in
assert (List.is_empty instrs);
fun st -> js, st
| Pv x -> access x
let statement_loc loc st =
( (match st.loc with
| None -> loc
| Some loc -> loc)
, st )
let initial_state queue = { queue; prop = const_p; loc = None; need_loc = false }
let flush_queue queue loc instrs =
let v, { queue; prop; _ } = instrs (initial_state queue) in
flush_queue queue prop loc v
let flush_all queue loc instrs =
let v, { queue; _ } = instrs (initial_state queue) in
flush_all queue loc v
let enqueue queue x flush_loc expr =
let (ce, instrs), { queue; prop; loc; need_loc } = expr (initial_state queue) in
let expr_loc =
match loc with
| None when need_loc -> Some flush_loc
| _ -> loc
in
enqueue queue prop x ce flush_loc expr_loc instrs
let get queue loc' x =
let x, { queue; loc; _ } = x (initial_state queue) in
let loc =
match loc with
| None -> loc'
| Some loc -> loc
in
x, loc, queue
let rec list_map f l st =
match l with
| [] -> [], st
| x :: r ->
let x', st = f x st in
let r', st = list_map f r st in
x' :: r', st
end
type state =
{ structure : Structure.t
; dom : Structure.graph
; visited_blocks : Addr.Set.t ref
; ctx : Ctx.t
; pc : Addr.t
}
module DTree = struct
type cond =
| IsTrue
| CEq of Targetint.t
| CLt of Targetint.t
| CLe of Targetint.t
type 'a branch = int list * 'a
type 'a t =
| If of cond * 'a t * 'a t
| Switch of 'a branch array
| Branch of 'a branch
let normalize a =
a
|> Array.to_list
|> List.sort ~cmp:(fun (cont1, _) (cont2, _) -> Poly.compare cont1 cont2)
|> list_group ~equal:Poly.equal fst snd
|> List.map ~f:(fun (cont1, l1) -> cont1, List.flatten l1)
|> List.sort ~cmp:(fun (_, l1) (_, l2) -> compare (List.length l1) (List.length l2))
|> Array.of_list
let build_if b1 b2 = If (IsTrue, Branch ([ 1 ], b1), Branch ([ 0 ], b2))
let build_switch (a : cont array) : cont t =
let m = Config.Param.switch_max_case () in
let ai = Array.mapi a ~f:(fun i x -> x, i) in
let ai : (Code.cont * int list) array =
Array.of_list (list_group ~equal:Poly.equal fst snd (Array.to_list ai))
in
let rec loop low up =
let array_norm : (Code.cont * int list) array =
normalize (Array.sub ai ~pos:low ~len:(up - low + 1))
in
let array_len = Array.length array_norm in
if array_len = 1
then Branch (snd array_norm.(0), fst array_norm.(0))
else
try
match array_norm with
| [| (b1, ([ i1 ] as l1)); (b2, l2) |] ->
If (CEq (Targetint.of_int_exn i1), Branch (l1, b1), Branch (l2, b2))
| [| (b1, l1); (b2, ([ i2 ] as l2)) |] ->
If (CEq (Targetint.of_int_exn i2), Branch (l2, b2), Branch (l1, b1))
| [| (b1, l1); (b2, l2) |] ->
let bound l1 =
match l1, List.rev l1 with
| min :: _, max :: _ -> min, max
| _ -> assert false
in
let min1, max1 = bound l1 in
let min2, max2 = bound l2 in
if max1 < min2
then If (CLt (Targetint.of_int_exn max1), Branch (l2, b2), Branch (l1, b1))
else if max2 < min1
then If (CLt (Targetint.of_int_exn max2), Branch (l1, b1), Branch (l2, b2))
else raise Not_found
| _ -> raise Not_found
with Not_found -> (
let nbcases = ref 1 in
for i = 0 to array_len - 2 do
nbcases := !nbcases + List.length (snd array_norm.(i))
done;
if !nbcases <= m
then Switch (Array.map array_norm ~f:(fun (x, l) -> l, x))
else
let h = (up + low) / 2 in
let b1 = loop low h and b2 = loop (succ h) up in
let range1 = snd ai.(h) and range2 = snd ai.(succ h) in
match range1, range2 with
| [], _ | _, [] -> assert false
| _, lower_bound2 :: _ -> If (CLe (Targetint.of_int_exn lower_bound2), b2, b1))
in
let len = Array.length ai in
assert (len > 0);
loop 0 (len - 1)
let nbbranch (a : cont t) pc =
let rec loop c : cont t -> int = function
| Branch (_, (pc', _)) -> if pc' = pc then succ c else c
| If (_, a, b) ->
let c = loop c a in
let c = loop c b in
c
| Switch a ->
Array.fold_left a ~init:c ~f:(fun acc (_, (pc', _)) ->
if pc' = pc then succ acc else acc)
in
loop 0 a
let nbcomp a =
let rec loop c = function
| Branch _ -> c
| If (_, a, b) ->
let c = succ c in
let c = loop c a in
let c = loop c b in
c
| Switch _ ->
let c = succ c in
c
in
loop 0 a
end
let build_graph ctx pc =
let visited_blocks = ref Addr.Set.empty in
let structure = Structure.build_graph ctx.Ctx.blocks pc in
let dom = Structure.dominator_tree structure in
{ visited_blocks; structure; dom; ctx; pc }
let rec visit visited prev s m x l =
if not (Var.Set.mem x visited)
then
let visited = Var.Set.add x visited in
let y = Var.Map.find x m in
if Code.Var.compare x y = 0
then visited, None, l
else if Var.Set.mem y prev
then
let t = Code.Var.fresh () in
visited, Some (y, t), (x, t) :: l
else if Var.Set.mem y s
then
let visited, aliases, l = visit visited (Var.Set.add x prev) s m y l in
match aliases with
| Some (a, b) when Code.Var.compare a x = 0 -> visited, None, (b, a) :: (x, y) :: l
| _ -> visited, aliases, (x, y) :: l
else visited, None, (x, y) :: l
else visited, None, l
let visit_all params args =
let m = Subst.build_mapping params args in
let s = List.fold_left params ~init:Var.Set.empty ~f:(fun s x -> Var.Set.add x s) in
let _, l =
Var.Set.fold
(fun x (visited, l) ->
let visited, _, l = visit visited Var.Set.empty s m x l in
visited, l)
s
(Var.Set.empty, [])
in
l
let parallel_renaming loc back_edge params args continuation queue =
if back_edge && Config.Flag.es6 ()
then
let args, params =
List.map2 args params ~f:(fun a p -> if Var.equal a p then None else Some (a, p))
|> List.filter_map ~f:(fun x -> x)
|> List.split
in
let open Expr_builder in
let args, loc, queue =
get
queue
loc
(List.fold_left args ~init:(return []) ~f:(fun acc a ->
let* acc = acc in
let* cx = access a in
return (cx :: acc)))
in
let never, code = continuation queue in
match params, args with
| [ p ], [ a ] ->
never, (J.Expression_statement (J.EBin (J.Eq, J.EVar (J.V p), a)), loc) :: code
| params, args ->
let lhs =
J.EAssignTarget
(J.ArrayTarget (List.map params ~f:(fun p -> J.TargetElementId (J.V p, None))))
in
let rhs = J.EArr (List.rev_map args ~f:(fun x -> J.Element x)) in
never, (J.Expression_statement (J.EBin (J.Eq, lhs, rhs)), loc) :: code
else
let l = visit_all params args in
let queue, before, renaming, _ =
List.fold_left
l
~init:(queue, [], [], Code.Var.Set.empty)
~f:(fun (queue, before, renaming, seen) (y, x) ->
let ((_, deps_x), cx, locx), queue = access_queue_loc queue loc x in
let seen' = Code.Var.Set.add y seen in
if not Code.Var.Set.(is_empty (inter seen deps_x))
then
let () = assert back_edge in
let before = (J.variable_declaration [ J.V x, (cx, locx) ], locx) :: before in
let renaming = (y, J.EVar (J.V x)) :: renaming in
queue, before, renaming, seen'
else
let renaming = (y, cx) :: renaming in
queue, before, renaming, seen')
in
let renaming =
if back_edge
then
List.map renaming ~f:(fun (t, e) ->
J.Expression_statement (J.EBin (J.Eq, J.EVar (J.V t), e)), loc)
else
List.map renaming ~f:(fun (t, e) ->
J.variable_declaration [ J.V t, (e, loc) ], loc)
in
let never, code = continuation queue in
never, List.rev_append before (List.rev_append renaming code)
let apply_fun_raw ctx f params exact trampolined loc =
let n = List.length params in
let apply_directly =
match f with
| J.EAccess _ | J.EDot _ ->
J.call (J.dot f (Utf8_string.of_string_exn "call")) (s_var "null" :: params) loc
| _ -> J.call f params loc
in
let apply =
if exact
then apply_directly
else
let l = Utf8_string.of_string_exn "l" in
J.ECond
( J.EBin
( J.EqEqEq
, J.ECond
( J.EBin (J.Ge, J.dot f l, int 0)
, J.dot f l
, J.EBin (J.Eq, J.dot f l, J.dot f (Utf8_string.of_string_exn "length"))
)
, int n )
, apply_directly
, J.call (runtime_fun ctx "caml_call_gen") [ f; J.array params ] loc )
in
if trampolined
then (
assert (Config.Flag.effects ());
J.ECond
( J.call (runtime_fun ctx "caml_stack_check_depth") [] loc
, apply
, J.call (runtime_fun ctx "caml_trampoline_return") [ f; J.array params ] loc ))
else apply
let generate_apply_fun ctx { arity; exact; trampolined } =
let f' = Var.fresh_n "f" in
let f = J.V f' in
let params =
Array.to_list
(Array.init arity ~f:(fun i ->
let a = Var.fresh_n (Printf.sprintf "a%d" i) in
J.V a))
in
let f' = J.EVar f in
let params' = List.map params ~f:(fun x -> J.EVar x) in
J.EFun
( None
, J.fun_
(f :: params)
[ ( J.Return_statement
(Some (apply_fun_raw ctx f' params' exact trampolined J.N), J.N)
, J.N )
]
J.N )
let apply_fun ctx f params exact trampolined loc =
if Config.Flag.inline_callgen () || (exact && not trampolined)
then apply_fun_raw ctx f params exact trampolined loc
else
let y =
Share.get_apply
(generate_apply_fun ctx)
{ arity = List.length params; exact; trampolined }
ctx.Ctx.share
in
J.call y (f :: params) loc
let internal_primitives = Hashtbl.create 31
let internal_prim name =
try
let _, f = Hashtbl.find internal_primitives name in
Some f
with Not_found -> None
let register_prim name k f = Hashtbl.add internal_primitives name (k, f)
let invalid_arity name l ~loc ~expected =
failwith
(Printf.sprintf
"%sInvalid arity for primitive %s. Expecting %d but used with %d."
(match (loc : J.location) with
| Pi { name = Some name; col; line; _ } ->
Printf.sprintf "%s:%d:%d: " name line col
| Pi _ | N | U -> "")
name
expected
(List.length l))
let register_un_prim name ?(need_loc = false) k f =
register_prim name k (fun l ctx loc ->
match l with
| [ x ] ->
let open Expr_builder in
let* cx = access' ~ctx x in
let* () = info ~need_loc (kind k) in
return (f cx loc)
| l -> invalid_arity name l ~loc ~expected:1)
let register_un_prim_ctx name k f =
register_prim name k (fun l ctx loc ->
match l with
| [ x ] ->
let open Expr_builder in
let* cx = access' ~ctx x in
let* () = info (kind k) in
return (f ctx cx loc)
| _ -> invalid_arity name l ~loc ~expected:1)
let register_bin_prim name k f =
register_prim name k (fun l ctx loc ->
match l with
| [ x; y ] ->
let open Expr_builder in
let* cx = access' ~ctx x in
let* cy = access' ~ctx y in
let* () = info (kind k) in
return (f cx cy loc)
| _ -> invalid_arity name l ~loc ~expected:2)
let register_tern_prim name f =
register_prim name `Mutator (fun l ctx loc ->
match l with
| [ x; y; z ] ->
let open Expr_builder in
let* cx = access' ~ctx x in
let* cy = access' ~ctx y in
let* cz = access' ~ctx z in
let* () = info mutator_p in
return (f cx cy cz loc)
| _ -> invalid_arity name l ~loc ~expected:3)
let register_un_math_prim name prim =
let prim = Utf8_string.of_string_exn prim in
register_un_prim name `Pure (fun cx loc ->
J.call (J.dot (s_var "Math") prim) [ cx ] loc)
let register_bin_math_prim name prim =
let prim = Utf8_string.of_string_exn prim in
register_bin_prim name `Pure (fun cx cy loc ->
J.call (J.dot (s_var "Math") prim) [ cx; cy ] loc)
let _ =
register_un_prim_ctx "%caml_format_int_special" `Pure (fun ctx cx loc ->
let s = J.EBin (J.Plus, str_js_utf8 "", cx) in
ocaml_string ~ctx ~loc s);
register_un_prim "%direct_obj_tag" `Mutator (fun cx _loc -> Mlvalue.Block.tag cx);
register_bin_prim "caml_array_unsafe_get" `Mutable (fun cx cy _ ->
Mlvalue.Array.field cx cy);
register_bin_prim "%int_add" `Pure (fun cx cy _ ->
match cx, cy with
| J.EBin (J.Minus, cz, J.ENum n), J.ENum m ->
to_int (J.EBin (J.Plus, cz, J.ENum (J.Num.add m (J.Num.neg n))))
| _ -> to_int (plus_int cx cy));
register_bin_prim "%int_sub" `Pure (fun cx cy _ ->
match cx, cy with
| J.EBin (J.Minus, cz, J.ENum n), J.ENum m ->
to_int (J.EBin (J.Minus, cz, J.ENum (J.Num.add n m)))
| _ -> to_int (J.EBin (J.Minus, cx, cy)));
register_bin_prim "%direct_int_mul" `Pure (fun cx cy _ ->
to_int (J.EBin (J.Mul, cx, cy)));
register_bin_prim "%direct_int_div" `Pure (fun cx cy _ ->
to_int (J.EBin (J.Div, cx, cy)));
register_bin_prim "%direct_int_mod" `Pure (fun cx cy _ ->
to_int (J.EBin (J.Mod, cx, cy)));
register_bin_prim "%int_and" `Pure (fun cx cy _ -> J.EBin (J.Band, cx, cy));
register_bin_prim "%int_or" `Pure (fun cx cy _ -> J.EBin (J.Bor, cx, cy));
register_bin_prim "%int_xor" `Pure (fun cx cy _ -> J.EBin (J.Bxor, cx, cy));
register_bin_prim "%int_lsl" `Pure (fun cx cy _ -> J.EBin (J.Lsl, cx, cy));
register_bin_prim "%int_lsr" `Pure (fun cx cy _ -> to_int (J.EBin (J.Lsr, cx, cy)));
register_bin_prim "%int_asr" `Pure (fun cx cy _ -> J.EBin (J.Asr, cx, cy));
register_un_prim "%int_neg" `Pure (fun cx _ -> to_int (J.EUn (J.Neg, cx)));
register_bin_prim "caml_eq_float" `Pure (fun cx cy _ ->
bool (J.EBin (J.EqEqEq, cx, cy)));
register_bin_prim "caml_neq_float" `Pure (fun cx cy _ ->
bool (J.EBin (J.NotEqEq, cx, cy)));
register_bin_prim "caml_ge_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Le, cy, cx)));
register_bin_prim "caml_le_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Le, cx, cy)));
register_bin_prim "caml_gt_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Lt, cy, cx)));
register_bin_prim "caml_lt_float" `Pure (fun cx cy _ -> bool (J.EBin (J.Lt, cx, cy)));
register_bin_prim "caml_add_float" `Pure (fun cx cy _ -> J.EBin (J.Plus, cx, cy));
register_bin_prim "caml_sub_float" `Pure (fun cx cy _ -> J.EBin (J.Minus, cx, cy));
register_bin_prim "caml_mul_float" `Pure (fun cx cy _ -> J.EBin (J.Mul, cx, cy));
register_bin_prim "caml_div_float" `Pure (fun cx cy _ -> J.EBin (J.Div, cx, cy));
register_un_prim "caml_neg_float" `Pure (fun cx _ -> J.EUn (J.Neg, cx));
register_bin_prim "caml_fmod_float" `Pure (fun cx cy _ -> J.EBin (J.Mod, cx, cy));
register_tern_prim "caml_array_unsafe_set" (fun cx cy cz _ ->
J.EBin (J.Eq, Mlvalue.Array.field cx cy, cz));
register_un_prim "caml_alloc_dummy" `Pure (fun _ _ -> J.array []);
register_un_prim "caml_obj_dup" ~need_loc:true `Mutable (fun cx loc ->
J.call (J.dot cx (Utf8_string.of_string_exn "slice")) [] loc);
register_un_prim "caml_int_of_float" `Pure (fun cx _loc -> to_int cx);
register_un_math_prim "caml_abs_float" "abs";
register_un_math_prim "caml_acos_float" "acos";
register_un_math_prim "caml_asin_float" "asin";
register_un_math_prim "caml_atan_float" "atan";
register_bin_math_prim "caml_atan2_float" "atan2";
register_un_math_prim "caml_ceil_float" "ceil";
register_un_math_prim "caml_cos_float" "cos";
register_un_math_prim "caml_exp_float" "exp";
register_un_math_prim "caml_floor_float" "floor";
register_un_math_prim "caml_log_float" "log";
register_bin_math_prim "caml_power_float" "pow";
register_un_math_prim "caml_sin_float" "sin";
register_un_math_prim "caml_sqrt_float" "sqrt";
register_un_math_prim "caml_tan_float" "tan";
register_un_prim "caml_js_from_bool" `Pure (fun cx _ ->
J.EUn (J.Not, J.EUn (J.Not, cx)));
register_un_prim "caml_js_to_bool" `Pure (fun cx _ -> to_int cx);
register_tern_prim "caml_js_set" (fun cx cy cz _ ->
J.EBin (J.Eq, J.EAccess (cx, ANormal, cy), cz));
register_bin_prim "caml_js_get" `Mutator (fun cx cy _ -> J.EAccess (cx, ANormal, cy));
register_bin_prim "caml_js_delete" `Mutator (fun cx cy _ ->
J.EUn (J.Delete, J.EAccess (cx, ANormal, cy)));
register_bin_prim "caml_js_equals" `Mutable (fun cx cy _ ->
bool (J.EBin (J.EqEq, cx, cy)));
register_bin_prim "caml_js_strict_equals" `Mutable (fun cx cy _ ->
bool (J.EBin (J.EqEqEq, cx, cy)));
register_bin_prim "caml_js_instanceof" `Mutator (fun cx cy _ ->
bool (J.EBin (J.InstanceOf, cx, cy)));
register_un_prim "caml_js_typeof" `Mutator (fun cx _ -> J.EUn (J.Typeof, cx))
let throw_statement ctx cx k loc =
match (k : [ `Normal | `Reraise | `Notrace ]) with
| `Notrace -> [ J.Throw_statement cx, loc ]
| (`Normal | `Reraise) as m ->
let force =
match m with
| `Normal -> true
| `Reraise -> false
in
[ ( J.Throw_statement
(J.call
(Share.get_prim (runtime_fun ctx) "caml_maybe_attach_backtrace" ctx.share)
[ cx; (if force then int 1 else int 0) ]
loc)
, loc )
]
let remove_unused_tail_args ctx exact trampolined args =
if exact && not trampolined
then
let has_unused_tail_args =
List.fold_left
~f:(fun _ x -> Var.equal x ctx.Ctx.deadcode_sentinal)
~init:false
args
in
if has_unused_tail_args
then
List.fold_right
~f:(fun x args ->
match args with
| [] when Var.equal x ctx.Ctx.deadcode_sentinal -> []
| _ -> x :: args)
~init:[]
args
else args
else args
let rec translate_expr ctx loc x e level : (_ * J.statement_list) Expr_builder.t =
let open Expr_builder in
match e with
| Apply { f; args; exact } ->
let trampolined = Var.Set.mem x ctx.Ctx.trampolined_calls in
let args = remove_unused_tail_args ctx exact trampolined args in
let* () = info ~need_loc:true mutator_p in
let* args = list_map access args in
let* f = access f in
return (apply_fun ctx f args exact trampolined loc, [])
| Block (tag, a, array_or_not, _mut) ->
let* contents =
list_map
(fun x ->
let* cx = access x in
let cx =
match cx with
| J.EVar (J.V v) ->
if Var.equal v ctx.deadcode_sentinal
then J.ElementHole
else J.Element cx
| _ -> J.Element cx
in
return cx)
(Array.to_list a)
in
let x =
match array_or_not with
| Array -> Mlvalue.Array.make ~tag ~args:contents
| NotArray | Unknown -> Mlvalue.Block.make ~tag ~args:contents
in
return (x, [])
| Field (x, n, _) ->
let* cx = access x in
let* () = info mutable_p in
return (Mlvalue.Block.field cx n, [])
| Closure (args, ((pc, _) as cont)) ->
let loc = source_location ctx After pc in
let fv = Addr.Map.find pc ctx.freevars in
let clo = compile_closure ctx cont in
let clo =
J.EFun
( None
, J.fun_ (List.map args ~f:(fun v -> J.V v)) (Js_simpl.function_body clo) loc )
in
let* () = info (fst const_p, fv) in
return (clo, [])
| Constant c -> return (constant ~ctx c level)
| Special (Alias_prim name) ->
let prim = Share.get_prim (runtime_fun ctx) name ctx.Ctx.share in
return (prim, [])
| Prim (Extern "debugger", _) ->
let ins =
if Config.Flag.debugger () then J.Debugger_statement else J.Empty_statement
in
return (int 0, [ ins, loc ])
| Prim (p, l) ->
let* res =
match p, l with
| Vectlength, [ x ] ->
let* cx = access' ~ctx x in
return (Mlvalue.Array.length cx)
| Array_get, [ x; y ] ->
let* cx = access' ~ctx x in
let* cy = access' ~ctx y in
let* () = info mutable_p in
return (Mlvalue.Array.field cx cy)
| Extern "caml_js_var", [ Pc (String nm) ]
| Extern ("caml_js_expr" | "caml_pure_js_expr"), [ Pc (String nm) ] -> (
try
let pos =
match loc with
| J.N | J.U -> None
| J.Pi pi -> (
match pi.src with
| Some pos_fname ->
Some
{ Lexing.pos_fname
; pos_lnum = pi.line
; pos_cnum = pi.idx
; pos_bol = pi.idx
}
| None -> None)
in
let lex = Parse_js.Lexer.of_string ?pos nm in
return (Parse_js.parse_expr lex)
with Parse_js.Parsing_error pi ->
failwith
(Printf.sprintf
"Parsing error %S%s at l:%d col:%d"
nm
(match pi.Parse_info.src with
| None -> ""
| Some s -> Printf.sprintf ", file %S" s)
pi.Parse_info.line
pi.Parse_info.col))
| Extern "%js_array", l ->
let* args = list_map (fun x -> access' ~ctx x) l in
return (J.array args)
| Extern "%caml_js_opt_call", f :: o :: l ->
let* () = info ~need_loc:true mutator_p in
let* cf = access' ~ctx f in
let* co = access' ~ctx o in
let* args = list_map (fun x -> access' ~ctx x) l in
return (J.call (J.dot cf (Utf8_string.of_string_exn "call")) (co :: args) loc)
| Extern "%caml_js_opt_fun_call", f :: l ->
let* () = info ~need_loc:true mutator_p in
let* cf = access' ~ctx f in
let* args = list_map (fun x -> access' ~ctx x) l in
return (J.call cf args loc)
| Extern "%caml_js_opt_meth_call", o :: Pc (NativeString (Utf m)) :: l ->
let* () = info ~need_loc:true mutator_p in
let* co = access' ~ctx o in
let* args = list_map (fun x -> access' ~ctx x) l in
return (J.call (J.dot co m) args loc)
| Extern "%caml_js_opt_meth_call", _ -> assert false
| Extern "%caml_js_opt_new", c :: l ->
let* () = info ~need_loc:true mutator_p in
let* cc = access' ~ctx c in
let* args =
list_map
(fun x ->
let* cx = access' ~ctx x in
return (J.Arg cx))
l
in
return (J.ENew (cc, (if List.is_empty args then None else Some args), loc))
| Extern "caml_js_get", [ Pv o; Pc (NativeString (Utf f)) ] when J.is_ident' f ->
let* co = access o in
let* () = info mutable_p in
return (J.dot co f)
| Extern "caml_js_set", [ Pv o; Pc (NativeString (Utf f)); v ] when J.is_ident' f
->
let* co = access o in
let* cv = access' ~ctx v in
let* () = info mutator_p in
return (J.EBin (J.Eq, J.dot co f, cv))
| Extern "caml_js_delete", [ Pv o; Pc (NativeString (Utf f)) ] when J.is_ident' f
->
let* co = access o in
let* () = info mutator_p in
return (J.EUn (J.Delete, J.dot co f))
| Extern "%caml_js_opt_object", fields ->
let rec build_fields l =
match l with
| [] -> return []
| Pc (NativeString (Utf nm)) :: x :: r ->
let* cx = access' ~ctx x in
let* r' = build_fields r in
let p_name = if J.is_ident' nm then J.PNI nm else J.PNS nm in
return (J.Property (p_name, cx) :: r')
| _ -> assert false
in
let* fields = build_fields fields in
return (J.EObj fields)
| Extern "caml_alloc_dummy_function", [ _; size ] ->
let* i =
let* cx = access' ~ctx size in
return
(match cx with
| J.ENum i -> Targetint.to_int_exn (J.Num.to_targetint i)
| _ -> assert false)
in
let args = Array.to_list (Array.init i ~f:(fun _ -> J.V (Var.fresh ()))) in
let f = J.V (Var.fresh ()) in
let call =
J.call
(J.dot (J.EVar f) (Utf8_string.of_string_exn "fun"))
(List.map args ~f:(fun v -> J.EVar v))
loc
in
let e =
J.EFun (Some f, J.fun_ args [ J.Return_statement (Some call, J.N), J.N ] J.N)
in
return e
| Extern "caml_alloc_dummy_function", _ -> assert false
| Extern ("%resume" | "%perform" | "%reperform"), _ ->
if Config.Flag.effects () then assert false;
if not !(ctx.effect_warning)
then (
warn
"Warning: your program contains effect handlers; you should probably run \
js_of_ocaml with option '--enable=effects'@.";
ctx.effect_warning := true);
let name = "jsoo_effect_not_supported" in
let prim = Share.get_prim (runtime_fun ctx) name ctx.Ctx.share in
let* () = info ~need_loc:true (kind (Primitive.kind name)) in
return (J.call prim [] loc)
| Extern "caml_string_notequal", [ a; b ] when Config.Flag.use_js_string () ->
let* cx = access' ~ctx a in
let* cy = access' ~ctx b in
return (bool (J.EBin (J.NotEqEq, cx, cy)))
| Extern "caml_string_equal", [ a; b ] when Config.Flag.use_js_string () ->
let* cx = access' ~ctx a in
let* cy = access' ~ctx b in
return (bool (J.EBin (J.EqEqEq, cx, cy)))
| Extern "caml_string_concat", [ a; b ] when Config.Flag.use_js_string () ->
let* ca = access' ~ctx a in
let* cb = access' ~ctx b in
let rec add ca cb =
match cb with
| J.EBin (J.Plus, cb1, cb2) -> J.EBin (J.Plus, add ca cb1, cb2)
| _ -> J.EBin (J.Plus, ca, cb)
in
return (add ca cb)
| Extern name, l -> (
let name = Primitive.resolve name in
match internal_prim name with
| Some f -> f l ctx loc
| None ->
if String.is_prefix name ~prefix:"%"
then failwith (Printf.sprintf "Unresolved internal primitive: %s" name);
let prim = Share.get_prim (runtime_fun ctx) name ctx.Ctx.share in
let* () = info ~need_loc:true (kind (Primitive.kind name)) in
let* args = list_map (fun x -> access' ~ctx x) l in
return (J.call prim args loc))
| Not, [ x ] ->
let* cx = access' ~ctx x in
return (J.EBin (J.Minus, one, cx))
| Lt, [ x; y ] ->
let* cx = access' ~ctx x in
let* cy = access' ~ctx y in
return (bool (J.EBin (J.LtInt, cx, cy)))
| Le, [ x; y ] ->
let* cx = access' ~ctx x in
let* cy = access' ~ctx y in
return (bool (J.EBin (J.LeInt, cx, cy)))
| Eq, [ x; y ] ->
let* cx = access' ~ctx x in
let* cy = access' ~ctx y in
return (bool (J.EBin (J.EqEqEq, cx, cy)))
| Neq, [ x; y ] ->
let* cx = access' ~ctx x in
let* cy = access' ~ctx y in
return (bool (J.EBin (J.NotEqEq, cx, cy)))
| IsInt, [ x ] ->
let* cx = access' ~ctx x in
return (bool (Mlvalue.is_immediate cx))
| Ult, [ x; y ] ->
let* cx = access' ~ctx x in
let* cy = access' ~ctx y in
return (bool (J.EBin (J.LtInt, unsigned cx, unsigned cy)))
| (Vectlength | Array_get | Not | IsInt | Eq | Neq | Lt | Le | Ult), _ ->
assert false
in
return (res, [])
and translate_instr ctx expr_queue loc instr =
let open Expr_builder in
match instr with
| Assign (x, y) ->
flush_queue
expr_queue
loc
(let* cy = access y in
let* () = info mutator_p in
let* loc = statement_loc loc in
return [ J.Expression_statement (J.EBin (J.Eq, J.EVar (J.V x), cy)), loc ])
| Let (x, e) -> (
let e' = translate_expr ctx loc x e 0 in
let keep_name x =
match Code.Var.get_name x with
| None -> false
| Some "" -> false
| Some s ->
(not (generated_name s)) && not (String.is_prefix s ~prefix:"jsoo_")
in
match ctx.Ctx.live.(Var.idx x), e with
| 0, _ ->
flush_queue
expr_queue
loc
(let* ce, instrs = e' in
let* loc = statement_loc loc in
return (instrs @ [ J.Expression_statement ce, loc ]))
| 1, _
when Config.Flag.compact () && ((not (Config.Flag.pretty ())) || not (keep_name x))
-> enqueue expr_queue x loc e'
| 1, Constant (Int _ | Float _) -> enqueue expr_queue x loc e'
| _ ->
flush_queue
expr_queue
loc
(let* ce, instrs = e' in
let* loc = statement_loc loc in
return (instrs @ [ J.variable_declaration [ J.V x, (ce, loc) ], loc ])))
| Set_field (x, n, _, y) ->
flush_queue
expr_queue
loc
(let* cx = access x in
let* cy = access y in
let* () = info mutator_p in
let* loc = statement_loc loc in
return
[ J.Expression_statement (J.EBin (J.Eq, Mlvalue.Block.field cx n, cy)), loc ])
| Offset_ref (x, n) ->
flush_queue
expr_queue
loc
(let* cx = access x in
let expr = Mlvalue.Block.field cx 0 in
let expr' =
match n with
| 1 -> J.EUn (J.IncrA, expr)
| -1 -> J.EUn (J.DecrA, expr)
| n when n < 0 -> J.EBin (J.MinusEq, expr, int (-n))
| n -> J.EBin (J.PlusEq, expr, int n)
in
let* () = info mutator_p in
let* loc = statement_loc loc in
return [ J.Expression_statement expr', loc ])
| Array_set (x, y, z) ->
flush_queue
expr_queue
loc
(let* cx = access x in
let* cy = access y in
let* cz = access z in
let* () = info mutator_p in
let* loc = statement_loc loc in
return
[ J.Expression_statement (J.EBin (J.Eq, Mlvalue.Array.field cx cy, cz)), loc ])
| Event _ -> [], expr_queue
and translate_instrs_rev (ctx : Ctx.t) loc expr_queue instrs acc_rev muts_map =
match instrs with
| [] -> loc, acc_rev, expr_queue
| Let (_, Closure _) :: _ ->
let names, pcs, all, rem, loc = collect_closures loc instrs in
let fvs =
List.fold_left pcs ~init:Code.Var.Set.empty ~f:(fun acc pc ->
Code.Var.Set.union acc (Addr.Map.find pc ctx.freevars))
in
let muts =
List.fold_left pcs ~init:Code.Var.Set.empty ~f:(fun acc pc ->
Code.Var.Set.union acc (Code.Addr.Map.find pc ctx.Ctx.mutated_vars))
in
let names =
List.fold_left names ~init:Code.Var.Set.empty ~f:(fun acc name ->
Code.Var.Set.add name acc)
in
assert (Code.Var.Set.cardinal names = List.length all);
assert (Code.Var.Set.(is_empty (diff muts fvs)));
let old_muts_map = muts_map in
let muts_map_l =
Code.Var.Set.elements muts
|> List.map ~f:(fun x ->
( x
, match Code.Var.Map.find_opt x old_muts_map with
| None -> Code.Var.fork x
| Some x' -> x' ))
in
let muts_map =
List.fold_left muts_map_l ~init:old_muts_map ~f:(fun acc (x, x') ->
Var.Map.add x x' acc)
in
let ctx =
if List.is_empty muts_map_l
then ctx
else
let subst = Subst.from_map muts_map in
let p, _visited =
List.fold_left
pcs
~init:(ctx.blocks, Addr.Set.empty)
~f:(fun (blocks, visited) pc -> Subst.cont' subst pc blocks visited)
in
{ ctx with blocks = p }
in
let vd kind = function
| [] -> []
| l -> [ J.variable_declaration ~kind (List.rev l), J.N ]
in
let bind_fvs, bind_fvs_muts, expr_queue =
let expr_queue, vars, lets =
Code.Var.Set.fold
(fun v (expr_queue, vars, lets) ->
assert (not (Code.Var.Set.mem v names));
let (px, cx, locx), expr_queue = access_queue_loc expr_queue loc v in
let flushed = Code.Var.Set.(equal (snd px) (singleton v)) in
match
( flushed
, Code.Var.Map.find_opt v muts_map
, Code.Var.Map.find_opt v old_muts_map )
with
| true, None, _ -> expr_queue, vars, lets
| (true | false), Some _, Some _ -> expr_queue, vars, lets
| (true | false), Some v', None ->
let lets = (J.V v', (cx, locx)) :: lets in
expr_queue, vars, lets
| false, None, _ ->
let vars = (J.V v, (cx, locx)) :: vars in
expr_queue, vars, lets)
(Code.Var.Set.diff fvs names)
(expr_queue, [], [])
in
vars, lets, expr_queue
in
let bind_fvs_rec, funs_rev, expr_queue =
List.fold_left
all
~init:([], [], expr_queue)
~f:(fun (mut_rec, st_rev, expr_queue) (i, loc) ->
let x' =
match i with
| Let (x', _) -> x'
| _ -> assert false
in
let l, expr_queue = translate_instr ctx expr_queue loc i in
if Code.Var.Set.mem x' fvs
then
let mut_rec =
match Code.Var.Map.find_opt x' muts_map with
| None -> mut_rec
| Some v' -> (J.V v', (J.EVar (J.V x'), J.N)) :: mut_rec
in
match l with
| [ i ] -> mut_rec, i :: st_rev, expr_queue
| [] ->
let (_px, cx, locx), expr_queue = access_queue_loc expr_queue loc x' in
( mut_rec
, (J.variable_declaration [ J.V x', (cx, locx) ], locx) :: st_rev
, expr_queue )
| _ :: _ :: _ -> assert false
else mut_rec, List.rev_append l st_rev, expr_queue)
in
let acc_rev = vd Var bind_fvs @ acc_rev in
let acc_rev = vd Let bind_fvs_muts @ acc_rev in
let acc_rev = funs_rev @ acc_rev in
let acc_rev = vd Let bind_fvs_rec @ acc_rev in
translate_instrs_rev ctx loc expr_queue rem acc_rev muts_map
| Event loc :: rem ->
translate_instrs_rev ctx (J.Pi loc) expr_queue rem acc_rev muts_map
| instr :: rem ->
let st, expr_queue = translate_instr ctx expr_queue loc instr in
let acc_rev = List.rev_append st acc_rev in
translate_instrs_rev ctx loc expr_queue rem acc_rev muts_map
and translate_instrs (ctx : Ctx.t) loc expr_queue instrs =
let loc, st_rev, expr_queue =
translate_instrs_rev (ctx : Ctx.t) loc expr_queue instrs [] Var.Map.empty
in
loc, List.rev st_rev, expr_queue
and compile_block st loc queue (pc : Addr.t) scope_stack ~fall_through =
if (not (List.is_empty queue))
&& (Structure.is_loop_header st.structure pc
||
not (Config.Flag.inline ()))
then
let never, code = compile_block st loc [] pc scope_stack ~fall_through in
never, flush_all queue loc code
else
match Structure.is_loop_header st.structure pc with
| false -> compile_block_no_loop st loc queue pc scope_stack ~fall_through
| true ->
if debug () then Format.eprintf "@[<hv 2>for(;;) {@,";
let never_body, body =
let lab = J.Label.fresh () in
let lab_used = ref false in
let exit_branch_used = ref false in
let scope_stack = (pc, (lab, lab_used, Loop)) :: scope_stack in
let scope_stack =
match fall_through with
| Block fall_through ->
(fall_through, (lab, lab_used, Exit_loop exit_branch_used)) :: scope_stack
| Return -> scope_stack
in
let never_body, body =
compile_block_no_loop st loc queue pc scope_stack ~fall_through:(Block pc)
in
if debug () then Format.eprintf "}@]@,";
let for_loop =
J.For_statement (J.Left None, None, None, Js_simpl.block body), loc
in
let label = if !lab_used then Some lab else None in
let for_loop =
match label with
| None -> for_loop
| Some label -> J.Labelled_statement (label, for_loop), J.N
in
(not !exit_branch_used) && never_body, [ for_loop ]
in
never_body, body
and compile_block_no_loop st loc queue (pc : Addr.t) ~fall_through scope_stack =
if pc < 0 then assert false;
if Addr.Set.mem pc !(st.visited_blocks)
then (
Format.eprintf "Trying to compile a block twice !!!! %d@." pc;
assert false);
if debug () then Format.eprintf "Compiling block %d@;" pc;
st.visited_blocks := Addr.Set.add pc !(st.visited_blocks);
let block = Addr.Map.find pc st.ctx.blocks in
let loc, seq, queue = translate_instrs st.ctx loc queue block.body in
let nbbranch =
match block.branch with
| Switch (_, a) ->
let dtree = DTree.build_switch a in
fun pc -> DTree.nbbranch dtree pc
| Cond (_, a, b) ->
let dtree = DTree.build_if a b in
fun pc -> DTree.nbbranch dtree pc
| _ -> fun _pc -> 0
in
let new_scopes =
Structure.get_edges st.dom pc
|> Addr.Set.elements
|> List.filter ~f:(fun pc' ->
nbbranch pc' >= 2 || Structure.is_merge_node st.structure pc')
|> Structure.sort_in_post_order st.structure
in
let rec loop ~scope_stack ~fall_through l =
match l with
| [] -> compile_conditional st queue ~fall_through loc block.branch scope_stack
| x :: xs -> (
let l = J.Label.fresh () in
let used = ref false in
let scope_stack = (x, (l, used, Forward)) :: scope_stack in
let _never_inner, inner = loop ~scope_stack ~fall_through:(Block x) xs in
let never, code = compile_block st loc [] x scope_stack ~fall_through in
match !used with
| true -> never, [ J.Labelled_statement (l, (J.Block inner, J.N)), J.N ] @ code
| false -> never, inner @ code)
in
let never_after, after = loop ~scope_stack ~fall_through new_scopes in
never_after, seq @ after
and compile_decision_tree kind st scope_stack loc_before cx loc_after dtree ~fall_through
=
let rec loop loc cx scope_stack : _ -> bool * _ = function
| DTree.Branch (l, cont) ->
if debug ()
then
Format.eprintf
"@[<hv 2>case %s(%a) {@;"
kind
Format.(
pp_print_list
~pp_sep:(fun fmt () -> Format.pp_print_string fmt ", ")
(fun fmt pc -> Format.fprintf fmt "%d" pc))
l;
let never, code = compile_branch st loc_after [] cont scope_stack ~fall_through in
if debug () then Format.eprintf "}@]@;";
never, code
| DTree.If (cond, cont1, cont2) ->
let never1, iftrue = loop loc_after cx scope_stack cont1 in
let never2, iffalse = loop loc_after cx scope_stack cont2 in
let e' =
match cond with
| IsTrue -> cx
| CEq n -> J.EBin (J.EqEqEq, targetint n, cx)
| CLt n -> J.EBin (J.LtInt, targetint n, cx)
| CLe n -> J.EBin (J.LeInt, targetint n, cx)
in
( never1 && never2
, Js_simpl.if_statement
~function_end:(fun () -> source_location st.ctx After st.pc)
e'
loc
(Js_simpl.block iftrue)
never1
(Js_simpl.block iffalse)
never2 )
| DTree.Switch a ->
let all_never = ref true in
let len = Array.length a in
let last_index = len - 1 in
let lab = J.Label.fresh () in
let label_used = ref false in
let exit_branch_used = ref false in
let scope_stack =
match fall_through with
| Block fall_through ->
(fall_through, (lab, label_used, Exit_switch exit_branch_used))
:: scope_stack
| Return -> scope_stack
in
let last =
let case = a.(last_index) in
let never, code = loop loc_after cx scope_stack (Branch case) in
if not never then all_never := false;
code
in
let rec loop_cases pos acc =
let ((ints, _cont) as case) = a.(pos) in
let never, code = loop loc_after cx scope_stack (Branch case) in
if not never then all_never := false;
let _, acc =
List.fold_right ints ~init:(true, acc) ~f:(fun i (first, acc) ->
( false
, ( int i
, if first
then if not never then code @ [ Break_statement None, J.N ] else code
else [] )
:: acc ))
in
if pos = 0 then acc else loop_cases (pred pos) acc
in
let l = loop_cases (last_index - 1) [] in
let code =
if !label_used
then
[ ( J.Labelled_statement
(lab, (J.Switch_statement (cx, l, Some last, []), loc))
, loc )
]
else [ J.Switch_statement (cx, l, Some last, []), loc ]
in
(not !exit_branch_used) && !all_never, code
in
let cx, binds, loc =
match cx with
| (J.EVar _ | _) when DTree.nbcomp dtree <= 1 -> cx, [], loc_before
| _ ->
let v = J.V (Code.Var.fresh ()) in
J.EVar v, [ J.variable_declaration [ v, (cx, loc_before) ], J.N ], loc_after
in
let never, code = loop loc cx scope_stack dtree in
never, binds @ code
and compile_conditional st queue ~fall_through loc last scope_stack : _ * _ =
(if debug ()
then
match last with
| Branch _ | Poptrap _ -> ()
| Pushtrap _ -> Format.eprintf "@[<hv 2>try {@;"
| Return _ -> Format.eprintf "ret;@;"
| Raise _ -> Format.eprintf "raise;@;"
| Stop -> Format.eprintf "stop;@;"
| Cond (x, _, _) -> Format.eprintf "@[<hv 2>cond(%a){@;" Code.Var.print x
| Switch (x, _) -> Format.eprintf "@[<hv 2>switch(%a){@;" Code.Var.print x);
let res =
match last with
| Return x ->
let open Expr_builder in
let instrs =
let* cx = access x in
let return_expr =
if Var.equal st.ctx.deadcode_sentinal x then None else Some cx
in
let loc' =
match cx with
| ECall _ -> (
match source_location st.ctx After st.pc with
| J.N -> loc
| loc -> loc)
| _ -> loc
in
let* loc = statement_loc loc in
return [ J.Return_statement (return_expr, loc'), loc ]
in
true, flush_all queue loc instrs
| Raise (x, k) ->
let open Expr_builder in
let instrs =
let* cx = access x in
let* loc = statement_loc loc in
return (throw_statement st.ctx cx k loc)
in
true, flush_all queue loc instrs
| Stop ->
let e_opt =
if st.ctx.Ctx.should_export then Some (s_var Global_constant.exports) else None
in
true, flush_all queue loc [ J.Return_statement (e_opt, loc), loc ]
| Branch cont -> compile_branch st loc queue cont scope_stack ~fall_through
| Pushtrap (c1, x, e1) ->
let never_body, body = compile_branch st J.N [] c1 scope_stack ~fall_through in
if debug () then Format.eprintf "@,}@]@,@[<hv 2>catch {@;";
let never_handler, handler =
compile_branch st J.U [] e1 scope_stack ~fall_through
in
let exn_var, handler =
assert (not (List.mem x ~set:(snd e1)));
let wrap_exn x =
J.call
(Share.get_prim (runtime_fun st.ctx) "caml_wrap_exception" st.ctx.Ctx.share)
[ J.EVar (J.V x) ]
J.N
in
match st.ctx.Ctx.live.(Var.idx x) with
| 0 -> x, handler
| _ ->
let handler_var = Code.Var.fork x in
( handler_var
, (J.variable_declaration [ J.V x, (wrap_exn handler_var, J.U) ], J.N)
:: handler )
in
( never_body && never_handler
, flush_all
queue
loc
[ ( J.Try_statement (body, Some (Some (J.param' (J.V exn_var)), handler), None)
, loc )
] )
| Poptrap cont ->
let never, code = compile_branch st J.N [] cont scope_stack ~fall_through in
never, flush_all queue loc code
| Cond (x, c1, c2) ->
let cx, loc_before, queue = Expr_builder.get queue loc (Expr_builder.access x) in
let never, b =
compile_decision_tree
"Bool"
st
scope_stack
~fall_through
loc_before
cx
loc
(DTree.build_if c1 c2)
in
never, flush_all queue loc_before b
| Switch (x, a1) ->
let cx, loc_before, queue = Expr_builder.get queue loc (Expr_builder.access x) in
let never, code =
compile_decision_tree
"Int"
st
scope_stack
~fall_through
loc_before
cx
loc
(DTree.build_switch a1)
in
never, flush_all queue loc_before code
in
(if debug ()
then
match last with
| Branch _ | Poptrap _ | Return _ | Raise _ | Stop -> ()
| Switch _ | Cond _ | Pushtrap _ -> Format.eprintf "}@]@;");
res
and compile_argument_passing ctx loc queue (pc, args) back_edge continuation =
if List.is_empty args
then continuation queue
else
let block = Addr.Map.find pc ctx.Ctx.blocks in
parallel_renaming loc back_edge block.params args continuation queue
and compile_branch st loc queue ((pc, _) as cont) scope_stack ~fall_through : bool * _ =
let scope = List.assoc_opt pc scope_stack in
let back_edge =
List.exists
~f:(function
| pc', (_, _, Loop) when pc' = pc -> true
| _ -> false)
scope_stack
in
compile_argument_passing st.ctx loc queue cont back_edge (fun queue ->
if match fall_through with
| Block pc' -> pc' = pc
| Return -> false
then false, flush_all queue loc []
else
match scope with
| Some (l, used, Loop) ->
let rec can_skip_label scope_stack =
match scope_stack with
| [] -> assert false
| (_, (_, _, (Forward | Exit_switch _))) :: rem -> can_skip_label rem
| (pc', (l', _, (Loop | Exit_loop _))) :: rem ->
Poly.(l' = l) && (pc = pc' || can_skip_label rem)
in
let label =
if can_skip_label scope_stack
then None
else (
used := true;
Some l)
in
if debug ()
then
if Option.is_none label
then Format.eprintf "continue;@,"
else Format.eprintf "continue (%d);@," pc;
true, flush_all queue loc [ J.Continue_statement label, J.N ]
| Some (l, used, (Exit_loop branch_used | Exit_switch branch_used)) ->
branch_used := true;
let rec can_skip_label scope_stack =
match scope_stack with
| [] -> assert false
| (_, (_, _, Forward)) :: rem -> can_skip_label rem
| (pc', (l', _, (Loop | Exit_loop _ | Exit_switch _))) :: rem ->
Poly.(l' = l) && (pc = pc' || can_skip_label rem)
in
let label =
if can_skip_label scope_stack
then None
else (
used := true;
Some l)
in
if debug ()
then
if Option.is_none label
then Format.eprintf "break;@,"
else Format.eprintf "break (%d);@," pc;
true, flush_all queue loc [ J.Break_statement label, J.N ]
| Some (l, used, Forward) ->
if debug () then Format.eprintf "(br %d)@;" pc;
used := true;
true, flush_all queue loc [ J.Break_statement (Some l), J.N ]
| None -> compile_block st loc queue pc scope_stack ~fall_through)
and compile_closure ctx (pc, args) =
let st = build_graph ctx pc in
let current_blocks = Structure.get_nodes st.structure in
if debug () then Format.eprintf "@[<hv 2>closure {@;";
let scope_stack = [] in
let start_loc =
let block = Addr.Map.find pc ctx.Ctx.blocks in
match block.body with
| Event loc :: _ -> J.Pi loc
| _ -> J.U
in
let _never, res =
compile_branch st start_loc [] (pc, args) scope_stack ~fall_through:Return
in
if Addr.Set.cardinal !(st.visited_blocks) <> Addr.Set.cardinal current_blocks
then (
let missing = Addr.Set.diff current_blocks !(st.visited_blocks) in
Format.eprintf "Some blocks not compiled %s!@." (string_of_set missing);
assert false);
if debug () then Format.eprintf "}@]@;";
res
and collect_closures loc l =
match l with
| Event loc :: (Let (_, Closure _) :: _ as rem) -> collect_closures (J.Pi loc) rem
| (Let (x, Closure (_, (pc, _))) as i) :: rem ->
let names', pcs', i', rem', loc' = collect_closures loc rem in
x :: names', pc :: pcs', (i, loc) :: i', rem', loc'
| _ -> [], [], [], l, loc
let generate_shared_value ctx =
let strings =
( J.variable_declaration
((match ctx.Ctx.exported_runtime with
| None -> []
| Some (_, { contents = false }) -> []
| Some (v, _) ->
[ ( J.V v
, ( J.dot
(s_var Global_constant.global_object)
(Utf8_string.of_string_exn "jsoo_runtime")
, J.U ) )
])
@ List.map
(StringMap.bindings ctx.Ctx.share.Share.vars.Share.byte_strings)
~f:(fun (s, v) -> v, (str_js_byte s, J.U))
@ List.map
(StringMap.bindings ctx.Ctx.share.Share.vars.Share.utf_strings)
~f:(fun (s, v) -> v, (str_js_utf8 s, J.U))
@ List.map
(StringMap.bindings ctx.Ctx.share.Share.vars.Share.prims)
~f:(fun (s, v) -> v, (runtime_fun ctx s, J.U)))
, J.U )
in
if not (Config.Flag.inline_callgen ())
then
let applies =
List.map
(Share.AppMap.bindings ctx.Ctx.share.Share.vars.Share.applies)
~f:(fun (desc, v) ->
match generate_apply_fun ctx desc with
| J.EFun (_, decl) -> J.Function_declaration (v, decl), J.U
| _ -> assert false)
in
strings :: applies
else [ strings ]
let compile_program ctx pc =
if debug () then Format.eprintf "@[<v 2>";
let res = compile_closure ctx (pc, []) in
let res = generate_shared_value ctx @ res in
if debug () then Format.eprintf "@]@.";
res
let f
(p : Code.program)
~exported_runtime
~live_vars
~trampolined_calls
~should_export
~warn_on_unhandled_effect
~deadcode_sentinal
debug =
let t' = Timer.make () in
let share = Share.get ~trampolined_calls ~alias_prims:exported_runtime p in
let exported_runtime =
if exported_runtime then Some (Code.Var.fresh_n "runtime", ref false) else None
in
let mutated_vars = Freevars.f_mutable p in
let freevars = Freevars.f p in
let ctx =
Ctx.initial
~warn_on_unhandled_effect
~exported_runtime
~should_export
~deadcode_sentinal
~mutated_vars
~freevars
p.blocks
live_vars
trampolined_calls
share
debug
in
let p = compile_program ctx p.start in
if times () then Format.eprintf " code gen.: %a@." Timer.print t';
p
let init () =
List.iter
~f:(fun (nm, nm') -> Primitive.alias nm nm')
[ "%int_mul", "caml_mul"
; "%int_div", "caml_div"
; "%int_mod", "caml_mod"
; "caml_int32_neg", "%int_neg"
; "caml_int32_add", "%int_add"
; "caml_int32_sub", "%int_sub"
; "caml_int32_mul", "%int_mul"
; "caml_int32_div", "%int_div"
; "caml_int32_mod", "%int_mod"
; "caml_int32_and", "%int_and"
; "caml_int32_or", "%int_or"
; "caml_int32_xor", "%int_xor"
; "caml_int32_shift_left", "%int_lsl"
; "caml_int32_shift_right", "%int_asr"
; "caml_int32_shift_right_unsigned", "%int_lsr"
; "caml_int32_of_int", "%identity"
; "caml_int32_to_int", "%identity"
; "caml_int32_of_float", "caml_int_of_float"
; "caml_int32_to_float", "%identity"
; "caml_int32_format", "caml_format_int"
; "caml_int32_of_string", "caml_int_of_string"
; "caml_int32_compare", "caml_int_compare"
; "caml_nativeint_neg", "%int_neg"
; "caml_nativeint_add", "%int_add"
; "caml_nativeint_sub", "%int_sub"
; "caml_nativeint_mul", "%int_mul"
; "caml_nativeint_div", "%int_div"
; "caml_nativeint_mod", "%int_mod"
; "caml_nativeint_and", "%int_and"
; "caml_nativeint_or", "%int_or"
; "caml_nativeint_xor", "%int_xor"
; "caml_nativeint_shift_left", "%int_lsl"
; "caml_nativeint_shift_right", "%int_asr"
; "caml_nativeint_shift_right_unsigned", "%int_lsr"
; "caml_nativeint_of_int", "%identity"
; "caml_nativeint_to_int", "%identity"
; "caml_nativeint_of_float", "caml_int_of_float"
; "caml_nativeint_to_float", "%identity"
; "caml_nativeint_of_int32", "%identity"
; "caml_nativeint_to_int32", "%identity"
; "caml_nativeint_format", "caml_format_int"
; "caml_nativeint_of_string", "caml_int_of_string"
; "caml_nativeint_compare", "caml_int_compare"
; "caml_nativeint_bswap", "caml_int32_bswap"
; "caml_int64_of_int", "caml_int64_of_int32"
; "caml_int64_to_int", "caml_int64_to_int32"
; "caml_int64_of_nativeint", "caml_int64_of_int32"
; "caml_int64_to_nativeint", "caml_int64_to_int32"
; "caml_float_of_int", "%identity"
; "caml_array_get_float", "caml_array_get"
; "caml_floatarray_get", "caml_array_get"
; "caml_array_get_addr", "caml_array_get"
; "caml_array_set_float", "caml_array_set"
; "caml_floatarray_set", "caml_array_set"
; "caml_array_set_addr", "caml_array_set"
; "caml_array_unsafe_get_float", "caml_array_unsafe_get"
; "caml_floatarray_unsafe_get", "caml_array_unsafe_get"
; "caml_array_unsafe_set_float", "caml_array_unsafe_set"
; "caml_array_unsafe_set_addr", "caml_array_unsafe_set"
; "caml_floatarray_unsafe_set", "caml_array_unsafe_set"
; "caml_check_bound_gen", "caml_check_bound"
; "caml_check_bound_float", "caml_check_bound"
; "caml_alloc_dummy_float", "caml_alloc_dummy"
; "caml_make_array", "%identity"
; "caml_array_of_uniform_array", "%identity"
; "caml_ensure_stack_capacity", "%identity"
; "caml_js_from_float", "%identity"
; "caml_js_to_float", "%identity"
; "caml_js_from_int32", "%identity"
; "caml_js_from_nativeint", "%identity"
; "caml_js_to_int32", "caml_int_of_float"
; "caml_js_to_nativeint", "caml_int_of_float"
];
Hashtbl.iter
(fun name (k, _) -> Primitive.register name k None None)
internal_primitives