package js_of_ocaml-compiler

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file effects.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
(* Js_of_ocaml compiler
 * http://www.ocsigen.org/js_of_ocaml/
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, with linking exception;
 * either version 2.1 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *)

(* The following CPS transform is based on the one proposed in D.
   Hillerström, S. Lindley, R. Atkey, and K. C. Sivaramakrishnan,
   “Continuation Passing Style for Effect Handlers” (FSCD 2017), with
   adaptations to account for exception handlers (which are not
   considered in detail in the paper) and for the fact that the
   language is an SSA form rather than a classical lambda calculus.

   Rather than using a stack of continuations, and effect and
   exception handlers, only the current continuation is passed between
   functions, while exception handlers and effect handlers are stored
   in global variables. This avoid having to manipulate the stack each
   time the current continuation changes. This also allows us to deal
   with exceptions from the runtime or from JavaScript code (a [try
   ... with] at the top of stack can have access to the current
   exception handler and resume the execution from there; see the
   definition of runtime function [caml_callback]).
*)
open! Stdlib
open Code

let debug = Debug.find "effects"

let get_edges g src = try Hashtbl.find g src with Not_found -> Addr.Set.empty

let add_edge g src dst = Hashtbl.replace g src (Addr.Set.add dst (get_edges g src))

let reverse_graph g =
  let g' = Hashtbl.create 16 in
  Hashtbl.iter
    (fun child parents -> Addr.Set.iter (fun parent -> add_edge g' parent child) parents)
    g;
  g'

type control_flow_graph =
  { succs : (Addr.t, Addr.Set.t) Hashtbl.t
  ; preds : (Addr.t, Addr.Set.t) Hashtbl.t
  ; reverse_post_order : Addr.t list
  ; block_order : (Addr.t, int) Hashtbl.t
  }

let build_graph blocks pc =
  let succs = Hashtbl.create 16 in
  let l = ref [] in
  let visited = Hashtbl.create 16 in
  let rec traverse pc =
    if not (Hashtbl.mem visited pc)
    then (
      Hashtbl.add visited pc ();
      let successors = Code.fold_children blocks pc Addr.Set.add Addr.Set.empty in
      Hashtbl.add succs pc successors;
      Addr.Set.iter traverse successors;
      l := pc :: !l)
  in
  traverse pc;
  let block_order = Hashtbl.create 16 in
  List.iteri !l ~f:(fun i pc -> Hashtbl.add block_order pc i);
  let preds = reverse_graph succs in
  { succs; preds; reverse_post_order = !l; block_order }

let dominator_tree g =
  (* A Simple, Fast Dominance Algorithm
     Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy *)
  let dom = Hashtbl.create 16 in
  let rec inter pc pc' =
    (* Compute closest common ancestor *)
    if pc = pc'
    then pc
    else if Hashtbl.find g.block_order pc < Hashtbl.find g.block_order pc'
    then inter pc (Hashtbl.find dom pc')
    else inter (Hashtbl.find dom pc) pc'
  in
  List.iter g.reverse_post_order ~f:(fun pc ->
      let l = Hashtbl.find g.succs pc in
      Addr.Set.iter
        (fun pc' ->
          let d = try inter pc (Hashtbl.find dom pc') with Not_found -> pc in
          Hashtbl.replace dom pc' d)
        l);
  (* Check we have reached a fixed point (reducible graph) *)
  List.iter g.reverse_post_order ~f:(fun pc ->
      let l = Hashtbl.find g.succs pc in
      Addr.Set.iter
        (fun pc' ->
          let d = Hashtbl.find dom pc' in
          assert (inter pc d = d))
        l);
  dom

(* pc dominates pc' *)
let rec dominates g idom pc pc' =
  pc = pc'
  || Hashtbl.find g.block_order pc < Hashtbl.find g.block_order pc'
     && dominates g idom pc (Hashtbl.find idom pc')

(* pc has at least two forward edges moving into it *)
let is_merge_node g pc =
  let s = try Hashtbl.find g.preds pc with Not_found -> assert false in
  let o = Hashtbl.find g.block_order pc in
  let n =
    Addr.Set.fold
      (fun pc' n -> if Hashtbl.find g.block_order pc' < o then n + 1 else n)
      s
      0
  in
  n > 1

let dominance_frontier g idom =
  let frontiers = Hashtbl.create 16 in
  Hashtbl.iter
    (fun pc preds ->
      if Addr.Set.cardinal preds > 1
      then
        let dom = Hashtbl.find idom pc in
        let rec loop runner =
          if runner <> dom
          then (
            add_edge frontiers runner pc;
            loop (Hashtbl.find idom runner))
        in
        Addr.Set.iter loop preds)
    g.preds;
  frontiers

(****)

(*
We establish the list of blocks that needs to be CPS-transformed. We
also mark blocks that correspond to function continuations or
exception handlers. And we keep track of the exception handler
associated to each Poptrap, and possibly Raise.
*)
let compute_needed_transformations ~cfg ~idom ~cps_needed ~blocks ~start =
  let frontiers = dominance_frontier cfg idom in
  let transformation_needed = ref Addr.Set.empty in
  let matching_exn_handler = Hashtbl.create 16 in
  let is_continuation = Hashtbl.create 16 in
  let rec mark_needed pc =
    (* If a block is transformed, all the blocks in its dominance
       frontier needs to be transformed as well. *)
    if not (Addr.Set.mem pc !transformation_needed)
    then (
      transformation_needed := Addr.Set.add pc !transformation_needed;
      Addr.Set.iter mark_needed (get_edges frontiers pc))
  in
  let mark_continuation pc x =
    if not (Hashtbl.mem is_continuation pc)
    then
      Hashtbl.add
        is_continuation
        pc
        (if Addr.Set.mem pc (get_edges frontiers pc) then `Loop else `Param x)
  in
  let rec traverse visited ~englobing_exn_handlers pc =
    if Addr.Set.mem pc visited
    then visited
    else
      let visited = Addr.Set.add pc visited in
      let block = Addr.Map.find pc blocks in
      (match fst block.branch with
      | Branch (dst, _) -> (
          match List.last block.body with
          | Some
              ( Let
                  (x, (Apply _ | Prim (Extern ("%resume" | "%perform" | "%reperform"), _)))
              , _ )
            when Var.Set.mem x cps_needed ->
              (* The block after a function application that needs to
                 be turned to CPS or an effect primitive needs to be
                 transformed. *)
              mark_needed dst;
              (* We need to transform the englobing exception handlers
                 as well *)
              List.iter ~f:mark_needed englobing_exn_handlers;
              mark_continuation dst x
          | _ -> ())
      | Pushtrap (_, x, (handler_pc, _)) -> mark_continuation handler_pc x
      | Poptrap _ | Raise _ -> (
          match englobing_exn_handlers with
          | handler_pc :: _ -> Hashtbl.add matching_exn_handler pc handler_pc
          | _ -> ())
      | _ -> ());
      Code.fold_children
        blocks
        pc
        (fun pc visited ->
          let englobing_exn_handlers =
            match block.branch with
            | Pushtrap (_, _, (handler_pc, _)), _ when pc <> handler_pc ->
                handler_pc :: englobing_exn_handlers
            | Poptrap _, _ -> List.tl englobing_exn_handlers
            | _ -> englobing_exn_handlers
          in
          traverse visited ~englobing_exn_handlers pc)
        visited
  in
  ignore @@ traverse Addr.Set.empty ~englobing_exn_handlers:[] start;
  !transformation_needed, matching_exn_handler, is_continuation

(****)

(* Each block is turned into a function which is defined in the
   dominator of the block. [closure_of_jump] provides the name of the
   function correspoding to each block. [closures_of_alloc_site]
   provides the list of functions which should be defined in a given
   block. Exception handlers are dealt with separately.
*)
type jump_closures =
  { closure_of_jump : Var.t Addr.Map.t
  ; closures_of_alloc_site : (Var.t * Addr.t) list Addr.Map.t
  }

let jump_closures blocks_to_transform idom : jump_closures =
  Hashtbl.fold
    (fun node idom_node jc ->
      match Addr.Set.mem node blocks_to_transform with
      | false -> jc
      | true ->
          let cname = Var.fresh () in
          { closure_of_jump = Addr.Map.add node cname jc.closure_of_jump
          ; closures_of_alloc_site =
              Addr.Map.add
                idom_node
                ((cname, node)
                ::
                (try Addr.Map.find idom_node jc.closures_of_alloc_site
                 with Not_found -> []))
                jc.closures_of_alloc_site
          })
    idom
    { closure_of_jump = Addr.Map.empty; closures_of_alloc_site = Addr.Map.empty }

type cps_calls = Var.Set.t

type st =
  { mutable new_blocks : Code.block Addr.Map.t * Code.Addr.t
  ; blocks : Code.block Addr.Map.t
  ; cfg : control_flow_graph
  ; idom : (int, int) Hashtbl.t
  ; jc : jump_closures
  ; closure_info : (Addr.t, Var.t * Code.cont) Hashtbl.t
  ; cps_needed : Var.Set.t
  ; blocks_to_transform : Addr.Set.t
  ; is_continuation : (Addr.t, [ `Param of Var.t | `Loop ]) Hashtbl.t
  ; matching_exn_handler : (Addr.t, Addr.t) Hashtbl.t
  ; block_order : (Addr.t, int) Hashtbl.t
  ; live_vars : Deadcode.variable_uses
  ; flow_info : Global_flow.info
  ; cps_calls : cps_calls ref
  }

let add_block st block =
  let blocks, free_pc = st.new_blocks in
  st.new_blocks <- Addr.Map.add free_pc block blocks, free_pc + 1;
  free_pc

let closure_of_pc ~st pc =
  try Addr.Map.find pc st.jc.closure_of_jump with Not_found -> assert false

let allocate_closure ~st ~params ~body ~branch loc =
  let block = { params = []; body; branch } in
  let pc = add_block st block in
  let name = Var.fresh () in
  [ Let (name, Closure (params, (pc, []))), loc ], name

let tail_call ~st ?(instrs = []) ~exact ~check ~f args loc =
  assert (exact || check);
  let ret = Var.fresh () in
  if check then st.cps_calls := Var.Set.add ret !(st.cps_calls);
  instrs @ [ Let (ret, Apply { f; args; exact }), loc ], (Return ret, loc)

let cps_branch ~st ~src (pc, args) loc =
  match Addr.Set.mem pc st.blocks_to_transform with
  | false -> [], (Branch (pc, args), loc)
  | true ->
      let args, instrs =
        if List.is_empty args && Hashtbl.mem st.is_continuation pc
        then
          (* We are jumping to a block that is also used as a continuation.
             We pass it a dummy argument. *)
          let x = Var.fresh () in
          [ x ], [ Let (x, Constant (Int 0l)), noloc ]
        else args, []
      in
      (* We check the stack depth only for backward edges (so, at
         least once per loop iteration) *)
      let check = Hashtbl.find st.block_order src >= Hashtbl.find st.block_order pc in
      tail_call ~st ~instrs ~exact:true ~check ~f:(closure_of_pc ~st pc) args loc

let cps_jump_cont ~st ~src ((pc, _) as cont) loc =
  match Addr.Set.mem pc st.blocks_to_transform with
  | false -> cont
  | true ->
      let call_block =
        let body, branch = cps_branch ~st ~src cont loc in
        add_block st { params = []; body; branch }
      in
      call_block, []

let allocate_continuation ~st ~alloc_jump_closures ~split_closures pc x cont loc =
  (* We need to allocate an additional closure if [cont]
     does not correspond to a continuation that binds [x].
     This closure binds the return value [x], allocates
     closures for dominated blocks and jumps to the next
     block. When entering a loop, we also have to allocate a
     closure to bind [x] if it is used in the loop body. In
     other cases, we can just pass the closure corresponding
     to the next block. *)
  let pc', args = cont in
  if (match args with
     | [] -> true
     | [ x' ] -> Var.equal x x'
     | _ -> false)
     &&
     match Hashtbl.find st.is_continuation pc' with
     | `Param _ -> true
     | `Loop -> st.live_vars.(Var.idx x) = List.length args
  then alloc_jump_closures, closure_of_pc ~st pc'
  else
    let body, branch = cps_branch ~st ~src:pc cont loc in
    let inner_closures, outer_closures =
      (* For [Pushtrap], we need to separate the closures
         corresponding to the exception handler body (that may make
         use of [x]) from the other closures that may be used outside
         of the exception handler. *)
      if not split_closures
      then alloc_jump_closures, []
      else if is_merge_node st.cfg pc'
      then [], alloc_jump_closures
      else
        List.partition
          ~f:(fun (i, _) ->
            match i with
            | Let (_, Closure (_, (pc'', []))) -> dominates st.cfg st.idom pc' pc''
            | _ -> assert false)
          alloc_jump_closures
    in
    let body, branch =
      allocate_closure ~st ~params:[ x ] ~body:(inner_closures @ body) ~branch loc
    in
    outer_closures @ body, branch

let cps_last ~st ~alloc_jump_closures pc ((last, last_loc) : last * loc) ~k :
    (instr * loc) list * (last * loc) =
  match last with
  | Return x ->
      assert (List.is_empty alloc_jump_closures);
      (* Is the number of successive 'returns' is unbounded is CPS, it
         means that we have an unbounded of calls in direct style
         (even with tail call optimization) *)
      tail_call ~st ~exact:true ~check:false ~f:k [ x ] last_loc
  | Raise (x, rmode) -> (
      assert (List.is_empty alloc_jump_closures);
      match Hashtbl.find_opt st.matching_exn_handler pc with
      | Some pc when not (Addr.Set.mem pc st.blocks_to_transform) ->
          (* We are within a try ... with which is not
             transformed. We should raise an exception normally *)
          [], (last, last_loc)
      | _ ->
          let exn_handler = Var.fresh_n "raise" in
          let x, instrs =
            match rmode with
            | `Notrace -> x, []
            | (`Normal | `Reraise) as m ->
                let x' = Var.fork x in
                let force =
                  match m with
                  | `Normal -> true
                  | `Reraise -> false
                in
                let i =
                  [ ( Let
                        ( x'
                        , Prim
                            ( Extern "caml_maybe_attach_backtrace"
                            , [ Pv x; Pc (Int (if force then 1l else 0l)) ] ) )
                    , noloc )
                  ]
                in
                x', i
          in
          tail_call
            ~st
            ~instrs:
              ((Let (exn_handler, Prim (Extern "caml_pop_trap", [])), noloc) :: instrs)
            ~exact:true
            ~check:false
            ~f:exn_handler
            [ x ]
            last_loc)
  | Stop ->
      assert (List.is_empty alloc_jump_closures);
      [], (Stop, last_loc)
  | Branch cont ->
      let body, branch = cps_branch ~st ~src:pc cont last_loc in
      alloc_jump_closures @ body, branch
  | Cond (x, cont1, cont2) ->
      ( alloc_jump_closures
      , ( Cond
            ( x
            , cps_jump_cont ~st ~src:pc cont1 last_loc
            , cps_jump_cont ~st ~src:pc cont2 last_loc )
        , last_loc ) )
  | Switch (x, c1) ->
      (* To avoid code duplication during JavaScript generation, we need
         to create a single block per continuation *)
      let cps_jump_cont = Fun.memoize (fun x -> cps_jump_cont ~st ~src:pc x last_loc) in
      alloc_jump_closures, (Switch (x, Array.map c1 ~f:cps_jump_cont), last_loc)
  | Pushtrap (body_cont, exn, ((handler_pc, _) as handler_cont)) -> (
      assert (Hashtbl.mem st.is_continuation handler_pc);
      match Addr.Set.mem handler_pc st.blocks_to_transform with
      | false -> alloc_jump_closures, (last, last_loc)
      | true ->
          let constr_cont, exn_handler =
            allocate_continuation
              ~st
              ~alloc_jump_closures
              ~split_closures:true
              pc
              exn
              handler_cont
              last_loc
          in
          let push_trap =
            Let (Var.fresh (), Prim (Extern "caml_push_trap", [ Pv exn_handler ])), noloc
          in
          let body, branch = cps_branch ~st ~src:pc body_cont last_loc in
          constr_cont @ (push_trap :: body), branch)
  | Poptrap cont -> (
      match
        Addr.Set.mem (Hashtbl.find st.matching_exn_handler pc) st.blocks_to_transform
      with
      | false ->
          ( alloc_jump_closures
          , (Poptrap (cps_jump_cont ~st ~src:pc cont last_loc), last_loc) )
      | true ->
          let exn_handler = Var.fresh () in
          let body, branch = cps_branch ~st ~src:pc cont last_loc in
          ( alloc_jump_closures
            @ ((Let (exn_handler, Prim (Extern "caml_pop_trap", [])), noloc) :: body)
          , branch ))

let cps_instr ~st (instr : instr) : instr =
  match instr with
  | Let (x, Closure (params, (pc, _))) when Var.Set.mem x st.cps_needed ->
      (* Add the continuation parameter, and change the initial block if
         needed *)
      let k, cont = Hashtbl.find st.closure_info pc in
      Let (x, Closure (params @ [ k ], cont))
  | Let (x, Prim (Extern "caml_alloc_dummy_function", [ size; arity ])) -> (
      match arity with
      | Pc (Int a) ->
          Let
            ( x
            , Prim (Extern "caml_alloc_dummy_function", [ size; Pc (Int (Int32.succ a)) ])
            )
      | _ -> assert false)
  | Let (x, Apply { f; args; _ }) when not (Var.Set.mem x st.cps_needed) ->
      (* At the moment, we turn into CPS any function not called with
         the right number of parameter *)
      assert (Global_flow.exact_call st.flow_info f (List.length args));
      Let (x, Apply { f; args; exact = true })
  | Let (_, (Apply _ | Prim (Extern ("%resume" | "%perform" | "%reperform"), _))) ->
      assert false
  | _ -> instr

let cps_block ~st ~k pc block =
  let alloc_jump_closures =
    match Addr.Map.find pc st.jc.closures_of_alloc_site with
    | to_allocate ->
        List.map to_allocate ~f:(fun (cname, jump_pc) ->
            let params =
              let jump_block = Addr.Map.find jump_pc st.blocks in
              (* For a function to be used as a continuation, it needs
                 exactly one parameter. So, we add a parameter if
                 needed. *)
              if List.is_empty jump_block.params && Hashtbl.mem st.is_continuation jump_pc
              then
                (* We reuse the name of the value of the tail call of
                   one a the previous blocks. When there is a single
                   previous block, this is exactly what we want. For a
                   merge node, the variable is not used so we can just
                   as well use it. For a loop, we don't want the
                   return value of a call right before entering the
                   loop to be overriden by the value returned by the
                   last call in the loop. So, we may need to use an
                   additional closure to bind it, and we have to use a
                   fresh variable here *)
                let x =
                  match Hashtbl.find st.is_continuation jump_pc with
                  | `Param x -> x
                  | `Loop -> Var.fresh ()
                in
                [ x ]
              else jump_block.params
            in
            Let (cname, Closure (params, (jump_pc, []))), noloc)
    | exception Not_found -> []
  in

  let rewrite_instr x e loc =
    let perform_effect ~effect ~continuation loc =
      Some
        (fun ~k ->
          let e =
            Prim (Extern "caml_perform_effect", [ Pv effect; continuation; Pv k ])
          in
          let x = Var.fresh () in
          [ Let (x, e), loc ], (Return x, loc))
    in
    match e with
    | Apply { f; args; exact } when Var.Set.mem x st.cps_needed ->
        Some
          (fun ~k ->
            let exact =
              exact || Global_flow.exact_call st.flow_info f (List.length args)
            in
            tail_call ~st ~exact ~check:true ~f (args @ [ k ]) loc)
    | Prim (Extern "%resume", [ Pv stack; Pv f; Pv arg ]) ->
        Some
          (fun ~k ->
            let k' = Var.fresh_n "cont" in
            tail_call
              ~st
              ~instrs:
                [ Let (k', Prim (Extern "caml_resume_stack", [ Pv stack; Pv k ])), noloc ]
              ~exact:(Global_flow.exact_call st.flow_info f 1)
              ~check:true
              ~f
              [ arg; k' ]
              loc)
    | Prim (Extern "%perform", [ Pv effect ]) ->
        perform_effect ~effect ~continuation:(Pc (Int 0l)) loc
    | Prim (Extern "%reperform", [ Pv effect; continuation ]) ->
        perform_effect ~effect ~continuation loc
    | _ -> None
  in

  let rewritten_block =
    match List.split_last block.body, block.branch with
    | Some (body_prefix, (Let (x, e), loc)), (Return ret, _loc_ret) ->
        Option.map (rewrite_instr x e loc) ~f:(fun f ->
            assert (List.is_empty alloc_jump_closures);
            assert (Var.equal x ret);
            let instrs, branch = f ~k in
            body_prefix, instrs, branch)
    | Some (body_prefix, (Let (x, e), loc)), (Branch cont, loc_ret) ->
        Option.map (rewrite_instr x e loc) ~f:(fun f ->
            let constr_cont, k' =
              allocate_continuation
                ~st
                ~alloc_jump_closures
                ~split_closures:false
                pc
                x
                cont
                loc_ret
            in
            let instrs, branch = f ~k:k' in
            body_prefix, constr_cont @ instrs, branch)
    | Some (_, ((Set_field _ | Offset_ref _ | Array_set _ | Assign _), _)), _
    | Some _, ((Raise _ | Stop | Cond _ | Switch _ | Pushtrap _ | Poptrap _), _)
    | None, _ -> None
  in

  let body, last =
    match rewritten_block with
    | Some (body_prefix, last_instrs, last) ->
        List.map body_prefix ~f:(fun (i, loc) -> cps_instr ~st i, loc) @ last_instrs, last
    | None ->
        let last_instrs, last = cps_last ~st ~alloc_jump_closures pc block.branch ~k in
        let body =
          List.map block.body ~f:(fun (i, loc) -> cps_instr ~st i, loc) @ last_instrs
        in
        body, last
  in

  { params = (if Addr.Set.mem pc st.blocks_to_transform then [] else block.params)
  ; body
  ; branch = last
  }

let cps_transform ~live_vars ~flow_info ~cps_needed p =
  let closure_info = Hashtbl.create 16 in
  let cps_calls = ref Var.Set.empty in
  let p =
    Code.fold_closures_innermost_first
      p
      (fun name_opt _ (start, args) ({ blocks; free_pc; _ } as p) ->
        (* We speculatively add a block at the beginning of the
           function. In case of tail-recursion optimization, the
           function implementing the loop body may have to be placed
           there. *)
        let initial_start = start in
        let start', blocks' =
          ( free_pc
          , Addr.Map.add
              free_pc
              { params = []; body = []; branch = Branch (start, args), noloc }
              blocks )
        in
        let cfg = build_graph blocks' start' in
        let idom = dominator_tree cfg in
        let should_compute_needed_transformations =
          match name_opt with
          | Some name -> Var.Set.mem name cps_needed
          | None ->
              (* We are handling the toplevel code. There may remain
                 some CPS calls at toplevel. *)
              true
        in
        let blocks_to_transform, matching_exn_handler, is_continuation =
          if should_compute_needed_transformations
          then
            compute_needed_transformations
              ~cfg
              ~idom
              ~cps_needed
              ~blocks:blocks'
              ~start:start'
          else Addr.Set.empty, Hashtbl.create 1, Hashtbl.create 1
        in
        let closure_jc = jump_closures blocks_to_transform idom in
        let start, args, blocks, free_pc =
          (* Insert an initial block if needed. *)
          if Addr.Map.mem start' closure_jc.closures_of_alloc_site
          then start', [], blocks', free_pc + 1
          else start, args, blocks, free_pc
        in
        let st =
          { new_blocks = Addr.Map.empty, free_pc
          ; blocks
          ; cfg
          ; idom
          ; jc = closure_jc
          ; closure_info
          ; cps_needed
          ; blocks_to_transform
          ; is_continuation
          ; matching_exn_handler
          ; block_order = cfg.block_order
          ; flow_info
          ; live_vars
          ; cps_calls
          }
        in
        let function_needs_cps =
          match name_opt with
          | Some _ -> should_compute_needed_transformations
          | None ->
              (* We are handling the toplevel code. If it performs no
                 CPS call, we can leave it in direct style and we
                 don't need to wrap it within a [caml_callback]. *)
              not (Addr.Set.is_empty blocks_to_transform)
        in
        if debug ()
        then (
          Format.eprintf "======== %b@." function_needs_cps;
          Code.preorder_traverse
            { fold = Code.fold_children }
            (fun pc _ ->
              if Addr.Set.mem pc blocks_to_transform then Format.eprintf "CPS@.";
              let block = Addr.Map.find pc blocks in
              Code.Print.block
                (fun _ xi -> Partial_cps_analysis.annot cps_needed xi)
                pc
                block)
            start
            blocks
            ());
        let blocks =
          let transform_block =
            if function_needs_cps
            then (
              let k = Var.fresh_n "cont" in
              Hashtbl.add closure_info initial_start (k, (start, args));
              fun pc block -> cps_block ~st ~k pc block)
            else
              fun _ block ->
              { block with
                body = List.map block.body ~f:(fun (i, loc) -> cps_instr ~st i, loc)
              }
          in
          Code.traverse
            { fold = Code.fold_children }
            (fun pc blocks ->
              Addr.Map.add pc (transform_block pc (Addr.Map.find pc blocks)) blocks)
            start
            st.blocks
            st.blocks
        in
        let new_blocks, free_pc = st.new_blocks in
        let blocks = Addr.Map.fold Addr.Map.add new_blocks blocks in
        { p with blocks; free_pc })
      p
  in
  let p =
    match Hashtbl.find_opt closure_info p.start with
    | None -> p
    | Some (k, _) ->
        (* Call [caml_callback] to set up the execution context. *)
        let new_start = p.free_pc in
        let blocks =
          let main = Var.fresh () in
          let args = Var.fresh () in
          let res = Var.fresh () in
          Addr.Map.add
            new_start
            { params = []
            ; body =
                [ Let (main, Closure ([ k ], (p.start, []))), noloc
                ; Let (args, Prim (Extern "%js_array", [])), noloc
                ; Let (res, Prim (Extern "caml_callback", [ Pv main; Pv args ])), noloc
                ]
            ; branch = Return res, noloc
            }
            p.blocks
        in
        { start = new_start; blocks; free_pc = new_start + 1 }
  in
  p, !cps_calls

(****)

let current_loop_header frontiers in_loop pc =
  (* We remain in a loop while the loop header is in the dominance frontier.
     We enter a loop when the block is in its dominance frontier. *)
  let frontier = get_edges frontiers pc in
  match in_loop with
  | Some header when Addr.Set.mem header frontier -> in_loop
  | _ -> if Addr.Set.mem pc frontier then Some pc else None

let wrap_call ~cps_needed p x f args accu loc =
  let arg_array = Var.fresh () in
  ( p
  , Var.Set.remove x cps_needed
  , [ Let (arg_array, Prim (Extern "%js_array", List.map ~f:(fun y -> Pv y) args)), noloc
    ; Let (x, Prim (Extern "caml_callback", [ Pv f; Pv arg_array ])), loc
    ]
    :: accu )

let wrap_primitive ~cps_needed p x e accu loc =
  let f = Var.fresh () in
  let closure_pc = p.free_pc in
  ( { p with
      free_pc = p.free_pc + 1
    ; blocks =
        Addr.Map.add
          closure_pc
          (let y = Var.fresh () in
           { params = []; body = [ Let (y, e), loc ]; branch = Return y, loc })
          p.blocks
    }
  , Var.Set.remove x (Var.Set.add f cps_needed)
  , let args = Var.fresh () in
    [ Let (f, Closure ([], (closure_pc, []))), noloc
    ; Let (args, Prim (Extern "%js_array", [])), noloc
    ; Let (x, Prim (Extern "caml_callback", [ Pv f; Pv args ])), loc
    ]
    :: accu )

let rewrite_toplevel_instr (p, cps_needed, accu) instr =
  match instr with
  | Let (x, Apply { f; args; _ }), loc when Var.Set.mem x cps_needed ->
      wrap_call ~cps_needed p x f args accu loc
  | Let (x, (Prim (Extern ("%resume" | "%perform" | "%reperform"), _) as e)), loc ->
      wrap_primitive ~cps_needed p x e accu loc
  | _ -> p, cps_needed, [ instr ] :: accu

(* Wrap function calls inside [caml_callback] at toplevel to avoid
   unncessary function nestings. This is not done inside loops since
   using repeatedly [caml_callback] can be costly. *)
let rewrite_toplevel ~cps_needed p =
  let { start; blocks; _ } = p in
  let cfg = build_graph blocks start in
  let idom = dominator_tree cfg in
  let frontiers = dominance_frontier cfg idom in
  let rec traverse visited (p : Code.program) cps_needed in_loop pc =
    if Addr.Set.mem pc visited
    then visited, p, cps_needed
    else
      let visited = Addr.Set.add pc visited in
      let in_loop = current_loop_header frontiers in_loop pc in
      let p, cps_needed =
        if Option.is_none in_loop
        then
          let block = Addr.Map.find pc p.blocks in
          let p, cps_needed, body_rev =
            List.fold_left ~f:rewrite_toplevel_instr ~init:(p, cps_needed, []) block.body
          in
          let body = List.concat @@ List.rev body_rev in
          { p with blocks = Addr.Map.add pc { block with body } p.blocks }, cps_needed
        else p, cps_needed
      in
      Code.fold_children
        blocks
        pc
        (fun pc (visited, p, cps_needed) -> traverse visited p cps_needed in_loop pc)
        (visited, p, cps_needed)
  in
  let _, p, cps_needed = traverse Addr.Set.empty p cps_needed None start in
  p, cps_needed

(****)

let split_blocks ~cps_needed (p : Code.program) =
  (* Ensure that function applications and effect primitives are in
     tail position *)
  let split_block pc block p =
    let is_split_point i r branch =
      match i with
      | Let (x, (Apply _ | Prim (Extern ("%resume" | "%perform" | "%reperform"), _))) ->
          ((not (List.is_empty r))
          ||
          match fst branch with
          | Branch _ -> false
          | Return x' -> not (Var.equal x x')
          | _ -> true)
          && Var.Set.mem x cps_needed
      | _ -> false
    in
    let rec split (p : Code.program) pc block accu l branch =
      match l with
      | [] ->
          let block = { block with body = List.rev accu } in
          { p with blocks = Addr.Map.add pc block p.blocks }
      | ((Let (x, e) as i), loc) :: r when is_split_point i r branch ->
          let pc' = p.free_pc in
          let block' = { params = []; body = []; branch = block.branch } in
          let block =
            { block with
              body = List.rev ((Let (x, e), loc) :: accu)
            ; branch = Branch (pc', []), noloc
            }
          in
          let p = { p with blocks = Addr.Map.add pc block p.blocks; free_pc = pc' + 1 } in
          split p pc' block' [] r branch
      | i :: r -> split p pc block (i :: accu) r branch
    in
    let rec should_split l branch =
      match l with
      | [] -> false
      | (i, _) :: r -> is_split_point i r branch || should_split r branch
    in
    if should_split block.body block.branch
    then split p pc block [] block.body block.branch
    else p
  in
  Addr.Map.fold split_block p.blocks p

(****)

let remove_empty_blocks ~live_vars (p : Code.program) : Code.program =
  let shortcuts = Hashtbl.create 16 in
  let rec resolve_rec visited ((pc, args) as cont) =
    if Addr.Set.mem pc visited
    then cont
    else
      match Hashtbl.find_opt shortcuts pc with
      | Some (params, cont) ->
          let pc', args' = resolve_rec (Addr.Set.add pc visited) cont in
          let s = Subst.from_map (Subst.build_mapping params args) in
          pc', List.map ~f:s args'
      | None -> cont
  in
  let resolve cont = resolve_rec Addr.Set.empty cont in
  Addr.Map.iter
    (fun pc block ->
      match block with
      | { params; body = []; branch = Branch cont, _; _ } ->
          let args =
            List.fold_left
              ~f:(fun args x -> Var.Set.add x args)
              ~init:Var.Set.empty
              (snd cont)
          in
          (* We can skip an empty block if its parameters are only
             used as argument to the continuation *)
          if List.for_all
               ~f:(fun x -> live_vars.(Var.idx x) = 1 && Var.Set.mem x args)
               params
          then Hashtbl.add shortcuts pc (params, cont)
      | _ -> ())
    p.blocks;
  let blocks =
    Addr.Map.map
      (fun block ->
        { block with
          branch =
            (let branch, loc = block.branch in
             let branch =
               match branch with
               | Branch cont -> Branch (resolve cont)
               | Cond (x, cont1, cont2) -> Cond (x, resolve cont1, resolve cont2)
               | Switch (x, a1) -> Switch (x, Array.map ~f:resolve a1)
               | Pushtrap (cont1, x, cont2) -> Pushtrap (resolve cont1, x, resolve cont2)
               | Poptrap cont -> Poptrap (resolve cont)
               | Return _ | Raise _ | Stop -> branch
             in
             branch, loc)
        })
      p.blocks
  in
  { p with blocks }

(****)

let f ~flow_info ~live_vars p =
  let t = Timer.make () in
  let cps_needed = Partial_cps_analysis.f p flow_info in
  let p, cps_needed = rewrite_toplevel ~cps_needed p in
  let p = split_blocks ~cps_needed p in
  let p, cps_calls = cps_transform ~live_vars ~flow_info ~cps_needed p in
  if Debug.find "times" () then Format.eprintf "  effects: %a@." Timer.print t;
  Code.invariant p;
  p, cps_calls
OCaml

Innovation. Community. Security.