package js_of_ocaml-compiler

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file code.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
(* Js_of_ocaml compiler
 * http://www.ocsigen.org/js_of_ocaml/
 * Copyright (C) 2010 Jérôme Vouillon
 * Laboratoire PPS - CNRS Université Paris Diderot
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, with linking exception;
 * either version 2.1 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 *)
open! Stdlib

module Addr = struct
  type t = int

  module Set = Set.Make (Int)
  module Map = Map.Make (Int)

  let to_string = string_of_int

  let zero = 0

  let pred = pred

  let succ = succ
end

module DebugAddr : sig
  type t = private Addr.t

  val of_addr : Addr.t -> t

  val to_addr : t -> Addr.t

  val no : t
end = struct
  type t = int

  let of_addr (x : Addr.t) : t = x

  let no = 0

  let to_addr (x : t) : Addr.t = x
end

module Var : sig
  type t

  val print : Format.formatter -> t -> unit

  val equal : t -> t -> bool

  val idx : t -> int

  val of_idx : int -> t

  val to_string : ?origin:t -> t -> string

  val fresh : unit -> t

  val fresh_n : string -> t

  val fork : t -> t

  val count : unit -> int

  val compare : t -> t -> int

  val get_loc : t -> Parse_info.t option

  val loc : t -> Parse_info.t -> unit

  val name : t -> string -> unit

  val get_name : t -> string option

  val propagate_name : t -> t -> unit

  val reset : unit -> unit

  val set_pretty : bool -> unit

  val set_stable : bool -> unit

  module Set : Set.S with type elt = t

  module Map : Map.S with type key = t

  module Tbl : sig
    type key = t

    type 'a t

    type size = unit

    val get : 'a t -> key -> 'a

    val set : 'a t -> key -> 'a -> unit

    val make : size -> 'a -> 'a t
  end

  module ISet : sig
    type elt = t

    type t

    val empty : unit -> t

    val iter : (elt -> unit) -> t -> unit

    val mem : t -> elt -> bool

    val add : t -> elt -> unit

    val remove : t -> elt -> unit

    val copy : t -> t
  end
end = struct
  module T = struct
    type t = int

    let compare : t -> t -> int = compare

    let equal (a : t) (b : t) = a = b
  end

  include T

  let printer = Var_printer.create Var_printer.Alphabet.javascript

  let locations = Hashtbl.create 17

  let last_var = ref 0

  let reset () =
    last_var := 0;
    Hashtbl.clear locations;
    Var_printer.reset printer

  let to_string ?origin i = Var_printer.to_string printer ?origin i

  let print f x = Format.fprintf f "v%d" x

  (* Format.fprintf f "%s" (to_string x) *)

  let name i nm = Var_printer.name printer i nm

  let loc i pi = Hashtbl.add locations i pi

  (*;
    Format.eprintf "loc for %d : %d-%d\n%!"
                   i pi.Parse_info.line pi.Parse_info.col
  *)
  let get_loc i = try Some (Hashtbl.find locations i) with Not_found -> None

  let fresh () =
    incr last_var;
    !last_var

  let fresh_n nm =
    incr last_var;
    name !last_var nm;
    !last_var

  let count () = !last_var + 1

  let idx v = v

  let of_idx v = v

  let get_name i = Var_printer.get_name printer i

  let propagate_name i j =
    Var_printer.propagate_name printer i j;
    match get_loc i with
    | None -> ()
    | Some l -> loc j l

  let set_pretty b = Var_printer.set_pretty printer b

  let set_stable b = Var_printer.set_stable printer b

  let fork o =
    let n = fresh () in
    propagate_name o n;
    n

  let dummy = -1

  module Set = Set.Make (T)
  module Map = Map.Make (T)

  module Tbl = struct
    type 'a t = 'a array

    type key = T.t

    type size = unit

    let get t x = t.(x)

    let set t x v = t.(x) <- v

    let make () v = Array.make (count ()) v
  end

  module ISet = struct
    type t = T.t array

    type elt = T.t

    let iter f t =
      for i = 0 to Array.length t - 1 do
        let x = t.(i) in
        if compare x dummy <> 0 then f x
      done

    let mem t x = compare t.(x) dummy <> 0

    let add t x = t.(x) <- x

    let remove t x = t.(x) <- dummy

    let copy = Array.copy

    let empty _v = Array.make (count ()) dummy
  end
end

type cont = Addr.t * Var.t list

type prim =
  | Vectlength
  | Array_get
  | Extern of string
  | Not
  | IsInt
  | Eq
  | Neq
  | Lt
  | Le
  | Ult

type array_or_not =
  | Array
  | NotArray
  | Unknown

type constant =
  | String of string
  | IString of string
  | Float of float
  | Float_array of float array
  | Int64 of int64
  | Tuple of int * constant array * array_or_not
  | Int of int32

let rec constant_equal a b =
  match a, b with
  | String a, String b -> Some (String.equal a b)
  | IString a, IString b -> Some (String.equal a b)
  | Tuple (ta, a, _), Tuple (tb, b, _) ->
      if ta <> tb || Array.length a <> Array.length b
      then Some false
      else
        let same = ref (Some true) in
        for i = 0 to Array.length a - 1 do
          match !same, constant_equal a.(i) b.(i) with
          | None, _ -> ()
          | _, None -> same := None
          | Some s, Some c -> same := Some (s && c)
        done;
        !same
  | Int64 a, Int64 b -> Some (Int64.equal a b)
  | Float_array a, Float_array b -> Some (Array.equal Float.equal a b)
  | Int a, Int b -> Some (Int32.equal a b)
  | Float a, Float b -> Some (Float.equal a b)
  | String _, IString _ | IString _, String _ -> None
  | Int _, Float _ | Float _, Int _ -> None
  | Tuple ((0 | 254), _, _), Float_array _ -> None
  | Float_array _, Tuple ((0 | 254), _, _) -> None
  | Tuple _, (String _ | IString _ | Int64 _ | Int _ | Float _ | Float_array _) ->
      Some false
  | Float_array _, (String _ | IString _ | Int64 _ | Int _ | Float _ | Tuple _) ->
      Some false
  | String _, (Int64 _ | Int _ | Float _ | Tuple _ | Float_array _) -> Some false
  | IString _, (Int64 _ | Int _ | Float _ | Tuple _ | Float_array _) -> Some false
  | Int64 _, (String _ | IString _ | Int _ | Float _ | Tuple _ | Float_array _) ->
      Some false
  | Float _, (String _ | IString _ | Float_array _ | Int64 _ | Tuple (_, _, _)) ->
      Some false
  | Int _, (String _ | IString _ | Float_array _ | Int64 _ | Tuple (_, _, _)) ->
      Some false

type prim_arg =
  | Pv of Var.t
  | Pc of constant

type expr =
  | Apply of Var.t * Var.t list * bool
  | Block of int * Var.t array * array_or_not
  | Field of Var.t * int
  | Closure of Var.t list * cont
  | Constant of constant
  | Prim of prim * prim_arg list

type instr =
  | Let of Var.t * expr
  | Set_field of Var.t * int * Var.t
  | Offset_ref of Var.t * int
  | Array_set of Var.t * Var.t * Var.t

type last =
  | Return of Var.t
  | Raise of Var.t * [ `Normal | `Notrace | `Reraise ]
  | Stop
  | Branch of cont
  | Cond of Var.t * cont * cont
  | Switch of Var.t * cont array * cont array
  | Pushtrap of cont * Var.t * cont * Addr.Set.t
  | Poptrap of cont * Addr.t

type block =
  { params : Var.t list
  ; handler : (Var.t * cont) option
  ; body : instr list
  ; branch : last
  }

type program =
  { start : Addr.t
  ; blocks : block Addr.Map.t
  ; free_pc : Addr.t
  }

(****)

module Print = struct
  let rec list pr f l =
    match l with
    | [] -> ()
    | [ x ] -> pr f x
    | x :: r -> Format.fprintf f "%a, %a" pr x (list pr) r

  let var_list = list Var.print

  let cont f (pc, args) = Format.fprintf f "%d (%a)" pc var_list args

  let rec constant f x =
    match x with
    | String s -> Format.fprintf f "%S" s
    | IString s -> Format.fprintf f "%S" s
    | Float fl -> Format.fprintf f "%.12g" fl
    | Float_array a ->
        Format.fprintf f "[|";
        for i = 0 to Array.length a - 1 do
          if i > 0 then Format.fprintf f ", ";
          Format.fprintf f "%.12g" a.(i)
        done;
        Format.fprintf f "|]"
    | Int64 i -> Format.fprintf f "%LdL" i
    | Tuple (tag, a, _) -> (
        Format.fprintf f "<%d>" tag;
        match Array.length a with
        | 0 -> ()
        | 1 ->
            Format.fprintf f "(";
            constant f a.(0);
            Format.fprintf f ")"
        | n ->
            Format.fprintf f "(";
            constant f a.(0);
            for i = 1 to n - 1 do
              Format.fprintf f ", ";
              constant f a.(i)
            done;
            Format.fprintf f ")")
    | Int i -> Format.fprintf f "%ld" i

  let arg f a =
    match a with
    | Pv x -> Var.print f x
    | Pc c -> constant f c

  let binop s =
    match s with
    | "%int_add" -> "+"
    | "%int_sub" -> "-"
    | "%int_mul" -> "*"
    | "%int_div" -> "/"
    | "%int_mod" -> "%"
    | "%int_and" -> "&"
    | "%int_or" -> "|"
    | "%int_xor" -> "^"
    | "%int_lsl" -> "<<"
    | "%int_lsr" -> ">>>"
    | "%int_asr" -> ">>"
    | _ -> raise Not_found

  let unop s =
    match s with
    | "%int_neg" -> "-"
    | _ -> raise Not_found

  let prim f p l =
    match p, l with
    | Vectlength, [ x ] -> Format.fprintf f "%a.length" arg x
    | Array_get, [ x; y ] -> Format.fprintf f "%a[%a]" arg x arg y
    | Extern s, [ x; y ] -> (
        try Format.fprintf f "%a %s %a" arg x (binop s) arg y
        with Not_found -> Format.fprintf f "\"%s\"(%a)" s (list arg) l)
    | Extern s, [ x ] -> (
        try Format.fprintf f "%s %a" (unop s) arg x
        with Not_found -> Format.fprintf f "\"%s\"(%a)" s (list arg) l)
    | Extern s, _ -> Format.fprintf f "\"%s\"(%a)" s (list arg) l
    | Not, [ x ] -> Format.fprintf f "!%a" arg x
    | IsInt, [ x ] -> Format.fprintf f "is_int(%a)" arg x
    | Eq, [ x; y ] -> Format.fprintf f "%a === %a" arg x arg y
    | Neq, [ x; y ] -> Format.fprintf f "!(%a === %a)" arg x arg y
    | Lt, [ x; y ] -> Format.fprintf f "%a < %a" arg x arg y
    | Le, [ x; y ] -> Format.fprintf f "%a <= %a" arg x arg y
    | Ult, [ x; y ] -> Format.fprintf f "%a <= %a" arg x arg y
    | _ -> assert false

  let expr f e =
    match e with
    | Apply (g, l, exact) ->
        if exact
        then Format.fprintf f "%a!(%a)" Var.print g var_list l
        else Format.fprintf f "%a(%a)" Var.print g var_list l
    | Block (t, a, _) ->
        Format.fprintf f "{tag=%d" t;
        for i = 0 to Array.length a - 1 do
          Format.fprintf f "; %d = %a" i Var.print a.(i)
        done;
        Format.fprintf f "}"
    | Field (x, i) -> Format.fprintf f "%a[%d]" Var.print x i
    | Closure (l, c) -> Format.fprintf f "fun(%a){%a}" var_list l cont c
    | Constant c -> Format.fprintf f "CONST{%a}" constant c
    | Prim (p, l) -> prim f p l

  let instr f i =
    match i with
    | Let (x, e) -> Format.fprintf f "%a = %a" Var.print x expr e
    | Set_field (x, i, y) -> Format.fprintf f "%a[%d] = %a" Var.print x i Var.print y
    | Offset_ref (x, i) -> Format.fprintf f "%a[0] += %d" Var.print x i
    | Array_set (x, y, z) ->
        Format.fprintf f "%a[%a] = %a" Var.print x Var.print y Var.print z

  let last f l =
    match l with
    | Return x -> Format.fprintf f "return %a" Var.print x
    | Raise (x, `Normal) -> Format.fprintf f "raise %a" Var.print x
    | Raise (x, `Reraise) -> Format.fprintf f "reraise %a" Var.print x
    | Raise (x, `Notrace) -> Format.fprintf f "raise_notrace %a" Var.print x
    | Stop -> Format.fprintf f "stop"
    | Branch c -> Format.fprintf f "branch %a" cont c
    | Cond (x, cont1, cont2) ->
        Format.fprintf f "if %a then %a else %a" Var.print x cont cont1 cont cont2
    | Switch (x, a1, a2) ->
        Format.fprintf f "switch %a {" Var.print x;
        Array.iteri a1 ~f:(fun i c -> Format.fprintf f "int %d -> %a; " i cont c);
        Array.iteri a2 ~f:(fun i c -> Format.fprintf f "tag %d -> %a; " i cont c);
        Format.fprintf f "}"
    | Pushtrap (cont1, x, cont2, pcs) ->
        Format.fprintf
          f
          "pushtrap %a handler %a => %a continuation %s"
          cont
          cont1
          Var.print
          x
          cont
          cont2
          (String.concat ~sep:", " (List.map (Addr.Set.elements pcs) ~f:string_of_int))
    | Poptrap (c, _) -> Format.fprintf f "poptrap %a" cont c

  type xinstr =
    | Instr of instr
    | Last of last

  let block annot pc block =
    Format.eprintf "==== %d (%a) ====@." pc var_list block.params;
    (match block.handler with
    | Some (x, c) -> Format.eprintf "    handler %a => %a@." Var.print x cont c
    | None -> ());
    List.iter block.body ~f:(fun i ->
        Format.eprintf " %s %a@." (annot pc (Instr i)) instr i);
    Format.eprintf " %s %a@." (annot pc (Last block.branch)) last block.branch;
    Format.eprintf "@."

  let program annot { start; blocks; _ } =
    Format.eprintf "Entry point: %d@.@." start;
    Addr.Map.iter (block annot) blocks
end

(****)

let fold_closures p f accu =
  Addr.Map.fold
    (fun _ block accu ->
      List.fold_left block.body ~init:accu ~f:(fun accu i ->
          match i with
          | Let (x, Closure (params, cont)) -> f (Some x) params cont accu
          | _ -> accu))
    p.blocks
    (f None [] (p.start, []) accu)

(****)

let prepend ({ start; blocks; free_pc } as p) body =
  match body with
  | [] -> p
  | _ ->
      let new_start = free_pc in
      let branch = if Addr.Map.mem start blocks then Branch (start, []) else Stop in
      let blocks =
        Addr.Map.add new_start { params = []; handler = None; body; branch } blocks
      in
      let free_pc = free_pc + 1 in
      { start = new_start; blocks; free_pc }

let empty =
  let start = 0 in
  let free_pc = 1 in
  let blocks =
    Addr.Map.singleton start { params = []; handler = None; body = []; branch = Stop }
  in
  { start; blocks; free_pc }

let fold_children blocks pc f accu =
  let block = Addr.Map.find pc blocks in
  let accu =
    match block.handler with
    | Some (_, (pc, _)) -> f pc accu
    | None -> accu
  in
  match block.branch with
  | Return _ | Raise _ | Stop -> accu
  | Branch (pc', _) | Poptrap ((pc', _), _) | Pushtrap ((pc', _), _, _, _) -> f pc' accu
  | Cond (_, (pc1, _), (pc2, _)) ->
      let accu = f pc1 accu in
      let accu = f pc2 accu in
      accu
  | Switch (_, a1, a2) ->
      let accu = Array.fold_right ~init:accu ~f:(fun (pc, _) accu -> f pc accu) a1 in
      let accu = Array.fold_right ~init:accu ~f:(fun (pc, _) accu -> f pc accu) a2 in
      accu

type 'c fold_blocs = block Addr.Map.t -> Addr.t -> (Addr.t -> 'c -> 'c) -> 'c -> 'c

type fold_blocs_poly = { fold : 'a. 'a fold_blocs } [@@unboxed]

let rec traverse' { fold } f pc visited blocks acc =
  if not (Addr.Set.mem pc visited)
  then
    let visited = Addr.Set.add pc visited in
    let visited, acc =
      fold
        blocks
        pc
        (fun pc (visited, acc) ->
          let visited, acc = traverse' { fold } f pc visited blocks acc in
          visited, acc)
        (visited, acc)
    in
    let acc = f pc acc in
    visited, acc
  else visited, acc

let traverse fold f pc blocks acc = snd (traverse' fold f pc Addr.Set.empty blocks acc)

let eq p1 p2 =
  p1.start = p2.start
  && Addr.Map.cardinal p1.blocks = Addr.Map.cardinal p2.blocks
  && Addr.Map.fold
       (fun pc block1 b ->
         b
         &&
         try
           let block2 = Addr.Map.find pc p2.blocks in
           Poly.(block1.params = block2.params)
           && Poly.(block1.branch = block2.branch)
           && Poly.(block1.body = block2.body)
         with Not_found -> false)
       p1.blocks
       true

let with_invariant = Debug.find "invariant"

let check_defs = false

let invariant { blocks; _ } =
  if with_invariant ()
  then
    let defs = Array.make (Var.count ()) false in
    let check_cont (cont, args) =
      let b = Addr.Map.find cont blocks in
      assert (List.length args >= List.length b.params)
    in
    let define x =
      if check_defs
      then (
        assert (not defs.(Var.idx x));
        defs.(Var.idx x) <- true)
    in
    let check_expr = function
      | Apply (_, _, _) -> ()
      | Block (_, _, _) -> ()
      | Field (_, _) -> ()
      | Closure (l, cont) ->
          List.iter l ~f:define;
          check_cont cont
      | Constant _ -> ()
      | Prim (_, _) -> ()
    in
    let check_instr = function
      | Let (x, e) ->
          define x;
          check_expr e
      | Set_field (_, _i, _) -> ()
      | Offset_ref (_x, _i) -> ()
      | Array_set (_x, _y, _z) -> ()
    in
    let check_last = function
      | Return _ -> ()
      | Raise _ -> ()
      | Stop -> ()
      | Branch cont -> check_cont cont
      | Cond (_x, cont1, cont2) ->
          check_cont cont1;
          check_cont cont2
      | Switch (_x, a1, a2) ->
          Array.iteri a1 ~f:(fun _ cont -> check_cont cont);
          Array.iteri a2 ~f:(fun _ cont -> check_cont cont)
      | Pushtrap (cont1, _x, cont2, _pcs) ->
          check_cont cont1;
          check_cont cont2
      | Poptrap (cont, _) -> check_cont cont
    in
    Addr.Map.iter
      (fun _pc block ->
        List.iter block.params ~f:define;
        Option.iter block.handler ~f:(fun (_, cont) -> check_cont cont);
        List.iter block.body ~f:check_instr;
        check_last block.branch)
      blocks
OCaml

Innovation. Community. Security.