package js_of_ocaml-compiler

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file generate_closure.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
(* Js_of_ocaml compiler
 * http://www.ocsigen.org/js_of_ocaml/
 * Copyright (C) 2010 Jérôme Vouillon
 * Laboratoire PPS - CNRS Université Paris Diderot
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, with linking exception;
 * either version 2.1 of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*)
open Stdlib
open Code

let debug_tc = Debug.find "gen_tc"

type closure_info =
  { f_name : Code.Var.t
  ; args : Code.Var.t list
  ; cont : Code.cont
  ; tc : Code.Addr.Set.t Code.Var.Map.t }

type 'a int_ext =
  { int : 'a
  ; ext : 'a }

module SCC = Strongly_connected_components.Make (Var)

let add_multi k v map =
  let set = try Var.Map.find k map with Not_found -> Addr.Set.empty in
  Var.Map.add k (Addr.Set.add v set) map

let rec tailcall pc blocks visited tc =
  if Addr.Set.mem pc visited
  then visited, tc
  else
    let visited = Addr.Set.add pc visited in
    let block = Addr.Map.find pc blocks in
    let tc_opt =
      match block.branch with
      | Return x -> (
        match List.last block.body with
        | Some (Let (y, Apply (z, _, true))) when Code.Var.compare x y = 0 ->
            Some (add_multi z pc tc)
        | None -> None
        | Some _ -> None)
      | _ -> None
    in
    match tc_opt with
    | Some tc -> visited, tc
    | None ->
        Code.fold_children
          blocks
          pc
          (fun pc (visited, tc) -> tailcall pc blocks visited tc)
          (visited, tc)

let rec collect_closures blocks l =
  match l with
  | Let (f_name, Closure (args, ((pc, _) as cont))) :: rem ->
      let tc = snd (tailcall pc blocks Addr.Set.empty Var.Map.empty) in
      let l, rem = collect_closures blocks rem in
      {f_name; args; cont; tc} :: l, rem
  | rem -> [], rem

let group_closures closures =
  let names =
    List.fold_left closures ~init:Var.Set.empty ~f:(fun names x ->
        Var.Set.add x.f_name names)
  in
  let closures_map =
    List.fold_left closures ~init:Var.Map.empty ~f:(fun closures_map x ->
        Var.Map.add x.f_name x closures_map)
  in
  let graph =
    List.fold_left closures ~init:Var.Map.empty ~f:(fun graph x ->
        let tc = Var.Map.fold (fun x _ tc -> Var.Set.add x tc) x.tc Var.Set.empty in
        let tc = Var.Set.inter names tc in
        Var.Map.add x.f_name tc graph)
  in
  closures_map, SCC.connected_components_sorted_from_roots_to_leaf graph

module Trampoline = struct
  let direct_call_block block ~counter ~x ~f ~args =
    let counter_plus_1 = Code.Var.fork counter in
    let return = Code.Var.fork x in
    { block with
      params = []
    ; body =
        [ Let (counter_plus_1, Prim (Extern "%int_add", [Pv counter; Pc (Int 1l)]))
        ; Let (return, Apply (f, counter_plus_1 :: args, true)) ]
    ; branch = Return return }

  let bounce_call_block block ~x ~f ~args =
    let return = Code.Var.fork x in
    let new_args = Code.Var.fresh () in
    { block with
      params = []
    ; body =
        [ Let
            ( new_args
            , Prim (Extern "%js_array", Pc (Int 0l) :: List.map args ~f:(fun x -> Pv x))
            )
        ; Let (return, Prim (Extern "caml_trampoline_return", [Pv f; Pv new_args])) ]
    ; branch = Return return }

  let wrapper_block f ~args ~counter =
    let result1 = Code.Var.fresh () in
    let result2 = Code.Var.fresh () in
    let block =
      { params = []
      ; handler = None
      ; body =
          [ Let (counter, Constant (Int 0l))
          ; Let (result1, Apply (f, counter :: args, true))
          ; Let (result2, Prim (Extern "caml_trampoline", [Pv result1])) ]
      ; branch = Return result2 }
    in
    block

  let wrapper_closure pc args = Closure (args, (pc, []))

  let f free_pc blocks closures_map component =
    match component with
    | SCC.No_loop id ->
        let ci = Var.Map.find id closures_map in
        let instr = Let (ci.f_name, Closure (ci.args, ci.cont)) in
        free_pc, blocks, {int = []; ext = [instr]}
    | SCC.Has_loop all ->
        if debug_tc ()
        then (
          Format.eprintf "Detect cycles of size (%d).\n%!" (List.length all);
          Format.eprintf
            "%s\n%!"
            (String.concat ~sep:", " (List.map all ~f:(fun x -> Var.to_string x))));
        let all =
          List.map all ~f:(fun id ->
              Code.Var.fresh_n "counter", Var.Map.find id closures_map)
        in
        let blocks, free_pc, instrs, instrs_wrapper =
          List.fold_left
            all
            ~init:(blocks, free_pc, [], [])
            ~f:(fun (blocks, free_pc, instrs, instrs_wrapper) (counter, ci) ->
              if debug_tc ()
              then Format.eprintf "Rewriting for %s\n%!" (Var.to_string ci.f_name);
              let new_f = Code.Var.fork ci.f_name in
              let new_args = List.map ci.args ~f:Code.Var.fork in
              let wrapper_pc = free_pc in
              let free_pc = free_pc + 1 in
              let new_counter = Code.Var.fork counter in
              let wrapper_block =
                wrapper_block new_f ~args:new_args ~counter:new_counter
              in
              let blocks = Addr.Map.add wrapper_pc wrapper_block blocks in
              let instr_wrapper = Let (ci.f_name, wrapper_closure wrapper_pc new_args) in
              let instr_real = Let (new_f, Closure (counter :: ci.args, ci.cont)) in
              let counter_and_pc =
                List.fold_left all ~init:[] ~f:(fun acc (counter, ci2) ->
                    try
                      let pcs = Addr.Set.elements (Var.Map.find ci.f_name ci2.tc) in
                      List.map pcs ~f:(fun x -> counter, x) @ acc
                    with Not_found -> acc)
              in
              let blocks, free_pc =
                List.fold_left
                  counter_and_pc
                  ~init:(blocks, free_pc)
                  ~f:(fun (blocks, free_pc) (counter, pc) ->
                    if debug_tc () then Format.eprintf "Rewriting tc in %d\n%!" pc;
                    let block = Addr.Map.find pc blocks in
                    let direct_call_pc = free_pc in
                    let bounce_call_pc = free_pc + 1 in
                    let free_pc = free_pc + 2 in
                    match List.rev block.body with
                    | Let (x, Apply (f, args, true)) :: rem_rev ->
                        assert (f = ci.f_name);
                        let blocks =
                          Addr.Map.add
                            direct_call_pc
                            (direct_call_block block ~counter ~x ~f:new_f ~args)
                            blocks
                        in
                        let blocks =
                          Addr.Map.add
                            bounce_call_pc
                            (bounce_call_block block ~x ~f:new_f ~args)
                            blocks
                        in
                        let direct = Code.Var.fresh () in
                        let branch =
                          Cond
                            (IsTrue, direct, (direct_call_pc, []), (bounce_call_pc, []))
                        in
                        let last =
                          Let
                            ( direct
                            , Prim
                                ( Lt
                                , [ Pv counter
                                  ; Pc
                                      (Int
                                         (Int32.of_int
                                            (Config.Param.tailcall_max_depth ()))) ] ) )
                        in
                        let block =
                          {block with body = List.rev (last :: rem_rev); branch}
                        in
                        let blocks = Addr.Map.remove pc blocks in
                        Addr.Map.add pc block blocks, free_pc
                    | _ -> assert false)
              in
              blocks, free_pc, instr_real :: instrs, instr_wrapper :: instrs_wrapper)
        in
        free_pc, blocks, {int = instrs; ext = instrs_wrapper}
end

module Ident = struct
  let f free_pc blocks closures_map component =
    match component with
    | SCC.No_loop id ->
        let ci = Var.Map.find id closures_map in
        let instr = Let (ci.f_name, Closure (ci.args, ci.cont)) in
        free_pc, blocks, {int = []; ext = [instr]}
    | SCC.Has_loop ids ->
        let instrs =
          List.map ids ~f:(fun id ->
              let ci = Var.Map.find id closures_map in
              let instr = Let (ci.f_name, Closure (ci.args, ci.cont)) in
              instr)
        in
        free_pc, blocks, {int = []; ext = instrs}
end

let rewrite_tc free_pc blocks closures_map component =
  let open Config.Param in
  match tailcall_optim () with
  | TcNone -> Ident.f free_pc blocks closures_map component
  | TcTrampoline -> Trampoline.f free_pc blocks closures_map component

let rewrite_mutable
    free_pc
    blocks
    mutated_vars
    rewrite_list
    {int = closures_intern; ext = closures_extern} =
  let internal_and_external = closures_intern @ closures_extern in
  assert (closures_extern <> []);
  let all_mut, names =
    List.fold_left
      internal_and_external
      ~init:(Var.Set.empty, Var.Set.empty)
      ~f:(fun (all_mut, names) i ->
        match i with
        | Let (x, Closure (_, (pc, _))) ->
            let all_mut =
              try Var.Set.union all_mut (Addr.Map.find pc mutated_vars)
              with Not_found -> all_mut
            in
            let names = Var.Set.add x names in
            all_mut, names
        | _ -> assert false)
  in
  let vars = Var.Set.elements (Var.Set.diff all_mut names) in
  if vars = []
  then free_pc, blocks, internal_and_external
  else
    match internal_and_external with
    | [Let (x, Closure (params, (pc, pc_args)))] ->
        let new_pc = free_pc in
        let free_pc = free_pc + 1 in
        let closure = Code.Var.fork x in
        let args = List.map vars ~f:Code.Var.fork in
        let new_x = Code.Var.fork x in
        let mapping = Subst.from_map (Subst.build_mapping (x :: vars) (new_x :: args)) in
        rewrite_list := (mapping, pc) :: !rewrite_list;
        let new_block =
          { params = []
          ; handler = None
          ; body = [Let (new_x, Closure (params, (pc, List.map pc_args ~f:mapping)))]
          ; branch = Return new_x }
        in
        let blocks = Addr.Map.add new_pc new_block blocks in
        let body =
          [ Let (closure, Closure (args, (new_pc, [])))
          ; Let (x, Apply (closure, vars, true)) ]
        in
        free_pc, blocks, body
    | _ ->
        let new_pc = free_pc in
        let free_pc = free_pc + 1 in
        let closure = Code.Var.fresh_n "closures" in
        let closure' = Code.Var.fresh_n "closures" in
        let b = Code.Var.fresh_n "block" in
        let args = List.map vars ~f:Code.Var.fork in
        let pcs =
          List.map internal_and_external ~f:(function
              | Let (_, Closure (_, (pc, _))) -> pc
              | _ -> assert false)
        in
        let old_xs =
          List.map closures_extern ~f:(function
              | Let (x, Closure _) -> x
              | _ -> assert false)
        in
        let new_xs = List.map old_xs ~f:Code.Var.fork in
        let mapping =
          Subst.from_map (Subst.build_mapping (old_xs @ vars) (new_xs @ args))
        in
        rewrite_list := List.map pcs ~f:(fun pc -> mapping, pc) @ !rewrite_list;
        let new_block =
          let proj =
            List.map2 closures_extern new_xs ~f:(fun cl new_x ->
                match cl with
                | Let (_, Closure (params, (pc, pc_args))) ->
                    Let (new_x, Closure (params, (pc, List.map pc_args ~f:mapping)))
                | _ -> assert false)
          in
          { params = []
          ; handler = None
          ; body = closures_intern @ proj @ [Let (b, Block (0, Array.of_list new_xs))]
          ; branch = Return b }
        in
        let blocks = Addr.Map.add new_pc new_block blocks in
        let body =
          [ Let (closure, Closure (args, (new_pc, [])))
          ; Let (closure', Apply (closure, vars, true)) ]
          @ List.mapi closures_extern ~f:(fun i x ->
                match x with
                | Let (x, Closure _) -> Let (x, Field (closure', i))
                | _ -> assert false)
        in
        free_pc, blocks, body

let rec rewrite_closures mutated_vars rewrite_list free_pc blocks body : int * _ * _ list
    =
  match body with
  | Let (_, Closure _) :: _ ->
      let closures, rem = collect_closures blocks body in
      let closures_map, components = group_closures closures in
      let free_pc, blocks, closures =
        List.fold_left
          (Array.to_list components)
          ~init:(free_pc, blocks, [])
          ~f:(fun (free_pc, blocks, acc) component ->
            let free_pc, blocks, closures =
              rewrite_tc free_pc blocks closures_map component
            in
            let free_pc, blocks, intrs =
              rewrite_mutable free_pc blocks mutated_vars rewrite_list closures
            in
            free_pc, blocks, intrs :: acc)
      in
      let free_pc, blocks, rem =
        rewrite_closures mutated_vars rewrite_list free_pc blocks rem
      in
      free_pc, blocks, List.flatten closures @ rem
  | i :: rem ->
      let free_pc, blocks, rem =
        rewrite_closures mutated_vars rewrite_list free_pc blocks rem
      in
      free_pc, blocks, i :: rem
  | [] -> free_pc, blocks, []

let f ((pc, blocks, free_pc) as p) : Code.program =
  Code.invariant p;
  let mutated_vars = Freevars.f p in
  let rewrite_list = ref [] in
  let blocks, free_pc =
    Addr.Map.fold
      (fun pc _ (blocks, free_pc) ->
        (* make sure we have the latest version *)
        let block = Addr.Map.find pc blocks in
        let free_pc, blocks, body =
          rewrite_closures mutated_vars rewrite_list free_pc blocks block.body
        in
        Addr.Map.add pc {block with body} blocks, free_pc)
      blocks
      (blocks, free_pc)
  in
  (* Code.invariant (pc, blocks, free_pc); *)
  let p =
    List.fold_left
      !rewrite_list
      ~init:(pc, blocks, free_pc)
      ~f:(fun program (mapping, pc) -> Subst.cont mapping pc program)
  in
  Code.invariant p;
  p
OCaml

Innovation. Community. Security.