package jenga

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

The type and operations on filesystem paths.

module Rel : sig ... end
module Abs : sig ... end
type t
val t_of_sexp : Ppx_sexp_conv_lib.Sexp.t -> t
val sexp_of_t : t -> Ppx_sexp_conv_lib.Sexp.t
val bin_read_t : t Core.Bin_prot.Read.reader
val __bin_read_t__ : (int -> t) Core.Bin_prot.Read.reader
val bin_size_t : t Core.Bin_prot.Size.sizer
val bin_write_t : t Core.Bin_prot.Write.writer
val bin_shape_t : Core.Bin_prot.Shape.t
include Core.Hashable_binable with type t := t
val hash_fold_t : Base.Hash.state -> t -> Base.Hash.state
val hash : t -> Base.Hash.hash_value
val hashable : t Base.Hashable.t
include Core.Comparable_binable with type t := t
include Base.Comparable.S with type t := t
include Base.Comparisons.S with type t := t
include Base.Comparisons.Infix with type t := t
val (>=) : t -> t -> bool
val (<=) : t -> t -> bool
val (=) : t -> t -> bool
val (>) : t -> t -> bool
val (<) : t -> t -> bool
val (<>) : t -> t -> bool
val equal : t -> t -> bool
val compare : t -> t -> int

compare t1 t2 returns 0 if t1 is equal to t2, a negative integer if t1 is less than t2, and a positive integer if t1 is greater than t2.

val min : t -> t -> t
val max : t -> t -> t
val ascending : t -> t -> int

ascending is identical to compare. descending x y = ascending y x. These are intended to be mnemonic when used like List.sort ~compare:ascending and List.sort ~cmp:descending, since they cause the list to be sorted in ascending or descending order, respectively.

val descending : t -> t -> int
val between : t -> low:t -> high:t -> bool

between t ~low ~high means low <= t <= high

val clamp_exn : t -> min:t -> max:t -> t

clamp_exn t ~min ~max returns t', the closest value to t such that between t' ~low:min ~high:max is true.

Raises if not (min <= max).

val clamp : t -> min:t -> max:t -> t Base.Or_error.t
include Base.Comparator.S with type t := t
type comparator_witness
val validate_lbound : min:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_ubound : max:t Base.Maybe_bound.t -> t Base.Validate.check
val validate_bound : min:t Base.Maybe_bound.t -> max:t Base.Maybe_bound.t -> t Base.Validate.check
val of_relative : Rel.t -> t
val of_absolute : Abs.t -> t
val case : t -> [ `relative of Rel.t | `absolute of Abs.t ]
val is_absolute : t -> bool
val the_root : t
val unix_root : t
val root_relative : string -> t
val absolute : string -> t
val relative : dir:t -> string -> t
val split : t -> t * string
val dirname : t -> t
val basename : t -> string
val to_string : t -> string

leading / for absolute; not for relative

val reach_from : dir:t -> t -> string

reach_from ~dir t = x means relative_or_absolute ~dir x = t

val is_descendant : dir:t -> t -> bool

is_descendant ~dir t = true means that reach_from ~dir t = Some x and relative ~dir x = t

val relative_or_absolute : dir:t -> string -> t
module Repo : sig ... end
val to_absolute_string : t -> string
val of_absolute_string : string -> t
val is_a_root : t -> bool

is_a_root t = (t = the_root) || (t = unix_root)

module With_store : sig ... end
OCaml

Innovation. Community. Security.