package irmin

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file object_graph.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
(*
 * Copyright (c) 2013-2017 Thomas Gazagnaire <thomas@gazagnaire.org>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *)

open! Import
include Object_graph_intf

let src = Logs.Src.create "irmin.graph" ~doc:"Irmin graph support"

module Log = (val Logs.src_log src : Logs.LOG)

let list_partition_map f t =
  let rec aux fst snd = function
    | [] -> (List.rev fst, List.rev snd)
    | h :: t -> (
        match f h with
        | `Fst x -> aux (x :: fst) snd t
        | `Snd x -> aux fst (x :: snd) t)
  in
  aux [] [] t

module Make (Hash : HASH) (Branch : Type.S) = struct
  module X = struct
    type t =
      [ `Contents of Hash.t
      | `Node of Hash.t
      | `Commit of Hash.t
      | `Branch of Branch.t ]
    [@@deriving irmin]

    let equal = Type.(unstage (equal t))
    let compare = Type.(unstage (compare t))
    let hash_branch = Type.(unstage (short_hash Branch.t))

    (* we are using cryptographic hashes here, so the first bytes
       are good enough to be used as short hashes. *)
    let hash (t : t) : int =
      match t with
      | `Contents c -> Hash.short_hash c
      | `Node n -> Hash.short_hash n
      | `Commit c -> Hash.short_hash c
      | `Branch b -> hash_branch b
  end

  module G = Graph.Imperative.Digraph.ConcreteBidirectional (X)
  module GO = Graph.Oper.I (G)
  module Topological = Graph.Topological.Make (G)

  module Table : sig
    type t

    val create : int option -> t
    val add : t -> X.t -> int -> unit
    val mem : t -> X.t -> bool
  end = struct
    module Lru = Lru.Make (X)
    module Tbl = Hashtbl.Make (X)

    type t = L of int Lru.t | T of int Tbl.t

    let create = function
      | None -> T (Tbl.create 1024)
      | Some n -> L (Lru.create n)

    let add t k v = match t with L t -> Lru.add t k v | T t -> Tbl.add t k v
    let mem t k = match t with L t -> Lru.mem t k | T t -> Tbl.mem t k
  end

  module Set = Set.Make (X)
  include G
  include GO

  type dump = vertex list * (vertex * vertex) list

  (* XXX: for the binary format, we can use offsets in the vertex list
     to save space. *)
  module Dump = struct
    type t = X.t list * (X.t * X.t) list [@@deriving irmin]
  end

  let vertex g = G.fold_vertex (fun k set -> k :: set) g []
  let edges g = G.fold_edges (fun k1 k2 list -> (k1, k2) :: list) g []
  let pp_vertices = Fmt.Dump.list (Type.pp X.t)
  let pp_depth ppf d = if d <> max_int then Fmt.pf ppf "depth=%d,@ " d

  type action = Visit of (X.t * int) | Treat of X.t

  let iter ?cache_size ?(depth = max_int) ~pred ~min ~max ~node ?edge ~skip ~rev
      () =
    Log.debug (fun f ->
        f "@[<2>iter:@ %arev=%b,@ min=%a,@ max=%a@, cache=%a@]" pp_depth depth
          rev pp_vertices min pp_vertices max
          Fmt.(Dump.option int)
          cache_size);
    let marks = Table.create cache_size in
    let mark key level = Table.add marks key level in
    let todo = Stack.create () in
    (* if a branch is in [min], add the commit it is pointing to too. *)
    let* min =
      Lwt_list.fold_left_s
        (fun acc -> function
          | `Branch _ as x -> pred x >|= fun c -> (x :: c) @ acc
          | x -> Lwt.return (x :: acc))
        [] min
    in
    let min = Set.of_list min in
    let has_mark key = Table.mem marks key in
    List.iter (fun k -> Stack.push (Visit (k, 0)) todo) max;
    let treat key =
      Log.debug (fun f -> f "TREAT %a" Type.(pp X.t) key);
      node key >>= fun () ->
      if not (Set.mem key min) then
        (* the edge function is optional to prevent an unnecessary computation
           of the preds .*)
        match edge with
        | None -> Lwt.return_unit
        | Some edge ->
            let* keys = pred key in
            Lwt_list.iter_p (fun k -> edge key k) keys
      else Lwt.return_unit
    in
    let visit_predecessors ~filter_history key level =
      let+ keys = pred key in
      (*if a commit is in [min] cut the history but still visit
        its nodes. *)
      List.iter
        (function
          | `Commit _ when filter_history -> ()
          | k -> Stack.push (Visit (k, level + 1)) todo)
        keys
    in
    let visit key level =
      if level >= depth then Lwt.return_unit
      else if has_mark key then Lwt.return_unit
      else
        skip key >>= function
        | true -> Lwt.return_unit
        | false ->
            let+ () =
              Log.debug (fun f -> f "VISIT %a %d" Type.(pp X.t) key level);
              mark key level;
              if rev then Stack.push (Treat key) todo;
              match key with
              | `Commit _ ->
                  visit_predecessors ~filter_history:(Set.mem key min) key level
              | _ ->
                  if Set.mem key min then Lwt.return_unit
                  else visit_predecessors ~filter_history:false key level
            in
            if not rev then Stack.push (Treat key) todo
    in
    let rec pop () =
      match Stack.pop todo with
      | exception Stack.Empty -> Lwt.return_unit
      | Treat key -> treat key >>= pop
      | Visit (key, level) -> visit key level >>= pop
    in
    pop ()

  let closure ?(depth = max_int) ~pred ~min ~max () =
    let g = G.create ~size:1024 () in
    List.iter (G.add_vertex g) max;
    let node key =
      if not (G.mem_vertex g key) then G.add_vertex g key else ();
      Lwt.return_unit
    in
    let edge node pred =
      G.add_edge g pred node;
      Lwt.return_unit
    in
    let skip _ = Lwt.return_false in
    iter ~depth ~pred ~min ~max ~node ~edge ~skip ~rev:false () >|= fun () -> g

  let min g =
    G.fold_vertex
      (fun v acc -> if G.in_degree g v = 0 then v :: acc else acc)
      g []

  let max g =
    G.fold_vertex
      (fun v acc -> if G.out_degree g v = 0 then v :: acc else acc)
      g []

  let vertex_attributes = ref (fun _ -> [])
  let edge_attributes = ref (fun _ -> [])
  let graph_name = ref None

  module Dot = Graph.Graphviz.Dot (struct
    include G

    let edge_attributes k = !edge_attributes k
    let default_edge_attributes _ = []

    let vertex_name k =
      let str t v = "\"" ^ Type.to_string t v ^ "\"" in
      match k with
      | `Node n -> str Hash.t n
      | `Commit c -> str Hash.t c
      | `Contents c -> str Hash.t c
      | `Branch b -> str Branch.t b

    let vertex_attributes k = !vertex_attributes k
    let default_vertex_attributes _ = []
    let get_subgraph _ = None

    let graph_attributes _ =
      match !graph_name with None -> [] | Some n -> [ `Label n ]
  end)

  let export t = (vertex t, edges t)

  let import (vs, es) =
    let g = G.create ~size:(List.length vs) () in
    List.iter (G.add_vertex g) vs;
    List.iter (fun (v1, v2) -> G.add_edge g v1 v2) es;
    g

  let output ppf vertex edges name =
    Log.debug (fun f -> f "output %s" name);
    let g = G.create ~size:(List.length vertex) () in
    List.iter (fun (v, _) -> G.add_vertex g v) vertex;
    List.iter (fun (v1, _, v2) -> G.add_edge g v1 v2) edges;
    let eattrs (v1, v2) =
      try
        let l = List.filter (fun (x, _, y) -> x = v1 && y = v2) edges in
        let l = List.fold_left (fun acc (_, l, _) -> l @ acc) [] l in
        let labels, others =
          list_partition_map (function `Label l -> `Fst l | x -> `Snd x) l
        in
        match labels with
        | [] -> others
        | [ l ] -> `Label l :: others
        | _ -> `Label (String.concat "," labels) :: others
      with Not_found -> []
    in
    let vattrs v = try List.assoc v vertex with Not_found -> [] in
    vertex_attributes := vattrs;
    edge_attributes := eattrs;
    graph_name := Some name;
    Dot.fprint_graph ppf g
end
OCaml

Innovation. Community. Security.