package interval_intel

  1. Overview
  2. Docs

Interval operations. Locally open this module — using e.g. I.(...) — to redefine classical arithmetic operators for interval arithmetic.

include module type of Interval.I

Interval operations. Locally open this module — using e.g. I.(...) — to redefine classical arithmetic operators for interval arithmetic.

include Interval.T with type number = float and type t = Interval.t
type number = float

Numbers type on which intervals are defined.

type t = Interval.t

The type of intervals.

val zero : t

Neutral element for addition.

val one : t

Neutral element for multiplication.

val pi : t

π with bounds properly rounded.

val two_pi : t

2π with bounds properly rounded.

val half_pi : t

π/2 with bounds properly rounded.

val e : t

e (Euler's constant) with bounds properly rounded.

val entire : t

The entire set of numbers.

  • since 1.5
val v : number -> number -> t

v a b returns the interval [a, b]. BEWARE that, unless you take care, if you use v a b with literal values for a and/or b, the resulting interval may not contain these values because the compiler will round them to binary numbers before passing them to v.

  • raises Invalid_argument

    if the interval [a, b] is equal to [-∞,-∞] or [+∞,+∞] or one of the bounds is NaN.

val low : t -> number

low t returns the lower bound of the interval.

val high : t -> number

high t returns the higher bound of the interval.

val of_int : int -> t

Returns the interval containing the conversion of an integer to the number type.

val to_string : ?fmt:(number -> 'b, 'a, 'b) format -> t -> string

to_string i return a string representation of the interval i.

  • parameter fmt

    is the format used to print the two bounds of i. Default: "%g" for float numbers.

val pr : out_channel -> t -> unit

Print the interval to the channel. To be used with Printf format "%a".

val pp : Format.formatter -> t -> unit

Print the interval to the formatter. To be used with Format format "%a".

val fmt : (number -> 'b, 'a, 'b) format -> (t -> 'c, 'd, 'e, 'c) format4

fmt number_fmt returns a format to print intervals where each component is printed with number_fmt.

Example: Printf.printf ("%s = " ^^ fmt "%.10f" ^^ "\n") name i.

Boolean functions

val compare_f : t -> number -> int

compare_f a x returns

  • 1 if high(a) < x,
  • 0 if low(a)xhigh(a), i.e., if xa, and
  • -1 if x < low(a).
val is_bounded : t -> bool

is_bounded x says whether the interval is bounded, i.e., -∞ < low(x) and high(x) < ∞.

  • since 1.5
val is_entire : t -> bool

is_entire x says whether x is the entire interval.

  • since 1.5
val equal : t -> t -> bool

equal a b says whether the two intervals are the same.

  • since 1.5
val (=) : t -> t -> bool

Synonym for equal.

  • since 1.5
val subset : t -> t -> bool

subset x y returns true iff xy.

  • since 1.5
val (<=) : t -> t -> bool

x <= y says whether x is weakly less than y i.e., ∀ξ ∈ x, ∃η ∈ y, ξ ≤ η and ∀η ∈ y, ∃ξ ∈ x, ξ ≤ η.

  • since 1.5
val (>=) : t -> t -> bool

x >= y says whether x is weakly greater than y i.e., ∀ξ ∈ x, ∃η ∈ y, ξ ≥ η and ∀η ∈ y, ∃ξ ∈ x, ξ ≥ η.

  • since 1.5
val precedes : t -> t -> bool

precedes x y returns true iff x is to the left but may touch y.

  • since 1.5
val interior : t -> t -> bool

interior x y returns true if x is interior to y in the topological sense. For example interior entire entire is true.

  • since 1.5
val (<) : t -> t -> bool

x < y says whether x is strictly weakly less than y i.e., ∀ξ ∈ x, ∃η ∈ y, ξ < η and ∀η ∈ y, ∃ξ ∈ x, ξ < η.

  • since 1.5
val (>) : t -> t -> bool

x > y iff y < x.

  • since 1.5
val strict_precedes : t -> t -> bool

strict_precedes x y returns true iff x is to the left and does not touch y.

  • since 1.5
val disjoint : t -> t -> bool

disjoint x y returns true iff xy = ∅.

  • since 1.5

Operations

val size : t -> t

size a returns an interval containing the true length of the interval high a - low a.

val size_high : t -> number

size_high a returns the length of the interval high a - low a rounded up.

val size_low : t -> number

size_low a returns the length of the interval high a - low a rounded down.

val sgn : t -> t

sgn a returns the sign of each bound, e.g., for floats [float (compare (low a) 0.), float (compare (high a) 0.)].

val truncate : t -> t

truncate a returns the integer interval containing a, that is [floor(low a), ceil(high a)].

val abs : t -> t

abs a returns the absolute value of the interval, that is

  • a if low a0.,
  • ~- a if high a0., and
  • [0, max (- low a) (high a)] otherwise.
val hull : t -> t -> t

hull a b returns the smallest interval containing a and b, that is [min (low a) (low b), max (high a) (high b)].

val inter_exn : t -> t -> t

inter_exn x y returns the intersection of x and y.

  • since 1.5
val inter : t -> t -> t option

inter_exn x y returns Some z where z is the intersection of x and y if it is not empty and None if the intersection is empty.

  • since 1.5
val max : t -> t -> t

max a b returns the "maximum" of the intervals a and b, that is [max (low a) (low b), max (high a) (high b)].

val min : t -> t -> t

min a b returns the "minimum" of the intervals a and b, that is [min (low a) (low b), min (high a) (high b)].

val (+) : t -> t -> t

a + b returns [low a +. low b, high a +. high b] properly rounded.

val (+.) : t -> number -> t

a +. x returns [low a +. x, high a +. x] properly rounded.

val (+:) : number -> t -> t

x +: a returns [a +. low a, x +. high a] properly rounded.

val (-) : t -> t -> t

a - b returns [low a -. high b, high a -. low b] properly rounded.

val (-.) : t -> number -> t

a -. x returns [low a -. x, high a -. x] properly rounded.

val (-:) : number -> t -> t

x -: a returns [x -. high a, x -. low a] properly rounded.

val (~-) : t -> t

~- a is the unary negation, it returns [-high a, -low a].

val (*) : t -> t -> t

a * b multiplies a by b according to interval arithmetic and returns the proper result. If a=zero or b=zero then zero is returned.

val (*.) : number -> t -> t

x *. a multiplies a by x according to interval arithmetic and returns the proper result. If x=0. then zero is returned.

val (*:) : t -> number -> t

a *. x multiplies a by x according to interval arithmetic and returns the proper result. If x=0. then zero is returned.

val (/) : t -> t -> t

a / b divides the first interval by the second according to interval arithmetic and returns the proper result. Raise Interval.Division_by_zero if b=zero.

val (/.) : t -> number -> t

a /. x divides a by x according to interval arithmetic and returns the proper result. Raise Interval.Division_by_zero if x=0.0.

val (/:) : number -> t -> t

x /: a divides x by a according to interval arithmetic and returns the result. Raise Interval.Division_by_zero if a=zero.

val inv : t -> t

inv a returns 1. /: a but is more efficient. Raise Interval.Division_by_zero if a=zero.

type 'a one_or_two =
  1. | One of 'a
  2. | Two of 'a * 'a
val invx : t -> t one_or_two

invx a is the extended division. When 0 ∉ a, the result is One(inv a). If 0 ∈ a, then the two natural intervals (properly rounded) Two([-∞, 1/(low a)], [1/(high a), +∞]) are returned. Raise Interval.Division_by_zero if a=zero.

val cancelminus : t -> t -> t

cancelminus x y returns the tightest interval z such that xz + y. If no such z exists, it returns entire.

  • since 1.5
val cancelplus : t -> t -> t

cancelplus x y returns the tightest interval z such that xz - y. If no such z exists, it returns entire.

  • since 1.5

Usual arithmetic operators

module U : sig ... end

Module undoing the redeclaration of usual infix operators +, +., etc. in case it is needed locally, while this module is open.

val mod_f : t -> float -> t

mod_f a f returns a mod f according to interval arithmetic and OCaml mod_float definition. Raise Interval.Division_by_zero if f=0.0.

val sqrt : t -> t

sqrt x returns

  • {low=sqrt x.low; high=sqrt x.high} (properly rounded) if x.low0.,
  • {low=0.; high=sqrt x.high} if x.low < 0 ≤ x.high.
val (**) : t -> int -> t

a**n returns interval a raised to nth power according to interval arithmetic. If n=0 then one is returned. Computed with exp-log in base2.

val (**.) : t -> float -> t

a **. f returns interval a raised to f power according to interval arithmetic. If f=0. then one is returned. Computed with exp-log in base2.

  • raises Domain_error

    if f <= 0. and a=zero or if f is not an integer value and a.high < 0..

val (**:) : float -> t -> t

x **: a returns float x raised to interval a power according to interval arithmetic, considering the restiction of x to x >= 0.

val (***) : t -> t -> t

a *** b returns interval a raised to b power according to interval arithmetic, considering the restriction of "x power y" to x >= 0.

  • raises Domain_error

    if a.high < 0 or (a.high = 0. and b.high <= 0.).

Logarithmic and exponential functions

val log : t -> t

log a returns, properly rounded,

  • {low=log a.low; high=log a.high} if a.low>0., and
  • {low=neg_infinity; high=log a.high} if a.low<0<=a.high.

Raise Domain_error if a.high ≤ 0.

val exp : t -> t

exp a returns {low=exp a.high; high=exp b.high}, properly rounded.

Trigonometric functions

val cos : t -> t

cos a returns the proper extension of cos to interval arithmetic. Returns [-1,1] if one of the bounds is greater or lower than ±2⁵³.

val sin : t -> t

sin a returns the proper extension of sin to interval arithmetic. Returns [-1,1] if one of the bounds is greater or lower than ±2⁵³.

val tan : t -> t

tan a returns the proper extension of tan to interval arithmetic. Returns [-∞,∞] if one of the bounds is greater or lower than ±2⁵³.

val acos : t -> t

acos a returns {low=(if a.high<1. then acos a.high else 0); high=(if a.low>-1. then acos a.low else pi)}. All values are in [0,π].

val asin : t -> t

asin a returns {low=(if a.low > -1. then asin a.low else -pi/2); high=(if a.low < 1. then asin a.high else pi/2)}. All values are in [-π/2,π/2].

val atan : t -> t

atan a returns {low=atan a.low; high=atan a.high} properly rounded.

val atan2mod : t -> t -> t

atan2mod y x returns the proper extension of interval arithmetic to atan2 but with values in [-π, 2π] instead of [-π, π]. When y.low < 0 and y.high > 0 and x.high < 0, then the returned interval is {low=atan2 y.high x.high; high=(atan2 y.low x.high) + 2π}. This preserves the best inclusion function possible but is not compatible with the standard definition of atan2.

val atan2 : t -> t -> t

Same function as above but when y.low < 0 and y.high > 0 and x.high < 0 the returned interval is [-π, π]. This does not preserve the best inclusion function but is compatible with the atan2 regular definition.

Hyperbolic functions

val cosh : t -> t

cosh is the proper extension of cosh to interval arithmetic.

val sinh : t -> t

sinh is the proper extension of sinh to interval arithmetic.

val tanh : t -> t

tanh is the proper extension of tanh to interval arithmetic.

Arrays of intervals

module Arr : sig ... end

Operations on arrays of intervals.

OCaml

Innovation. Community. Security.