package herdtools7

  1. Overview
  2. Docs

Source file Native.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
(******************************************************************************)
(*                                ASLRef                                      *)
(******************************************************************************)
(*
 * SPDX-FileCopyrightText: Copyright 2022-2023 Arm Limited and/or its affiliates <open-source-office@arm.com>
 * SPDX-License-Identifier: BSD-3-Clause
 *)
(******************************************************************************)
(* Disclaimer:                                                                *)
(* This material covers both ASLv0 (viz, the existing ASL pseudocode language *)
(* which appears in the Arm Architecture Reference Manual) and ASLv1, a new,  *)
(* experimental, and as yet unreleased version of ASL.                        *)
(* This material is work in progress, more precisely at pre-Alpha quality as  *)
(* per Arm’s quality standards.                                               *)
(* In particular, this means that it would be premature to base any           *)
(* production tool development on this material.                              *)
(* However, any feedback, question, query and feature request would be most   *)
(* welcome; those can be sent to Arm’s Architecture Formal Team Lead          *)
(* Jade Alglave <jade.alglave@arm.com>, or by raising issues or PRs to the    *)
(* herdtools7 github repository.                                              *)
(******************************************************************************)

open AST
open ASTUtils
open Infix

let _log = false

let list_update i f li =
  let rec aux acc i li =
    match (li, i) with
    | [], _ -> raise (Invalid_argument "list_update")
    | h :: t, 0 -> List.rev_append acc (f h :: t)
    | h :: t, i -> aux (h :: acc) (i - 1) t
  in
  aux [] i li

type native_value =
  | NV_Literal of AST.literal
  | NV_Vector of native_value list
  | NV_Record of native_value ASTUtils.IMap.t

let nv_literal l = NV_Literal l

let pp_literal f =
  let open Format in
  function
  | L_Int i -> Z.pp_print f i
  | L_Bool true -> pp_print_string f "TRUE"
  | L_Bool false -> pp_print_string f "FALSE"
  | L_Real r -> Q.to_float r |> pp_print_float f
  | L_BitVector bv -> Bitvector.pp_t f bv
  | L_String s -> pp_print_string f s

let rec pp_native_value f =
  let open Format in
  let pp_comma f () = fprintf f ",@ " in
  function
  | NV_Literal lit -> pp_literal f lit
  | NV_Vector li ->
      fprintf f "@[[%a]@]" (pp_print_list ~pp_sep:pp_comma pp_native_value) li
  | NV_Record map -> IMap.pp_print pp_native_value f map

let native_value_to_string = Format.asprintf "%a" pp_native_value

let mismatch_type v types =
  Error.fatal_unknown_pos (Error.MismatchType (native_value_to_string v, types))

module NativeBackend = struct
  type 'a m = 'a
  type value = native_value
  type primitive = value m list -> value list m
  type scope = AST.identifier * int

  module ScopedIdentifiers = struct
    type t = identifier * scope

    let compare = compare
  end

  module SIMap = Map.Make (ScopedIdentifiers)

  let is_undetermined _ = false
  let v_of_int i = L_Int (Z.of_int i) |> nv_literal
  let v_of_literal = nv_literal
  let debug_value = native_value_to_string

  let v_to_int = function
    | NV_Literal (L_Int i) -> Some (Z.to_int i)
    | _ -> None

  let bind (vm : 'a m) (f : 'a -> 'b m) : 'b m = f vm
  let prod_par (r1 : 'a m) (r2 : 'b m) : ('a * 'b) m = (r1, r2)
  let return v = v

  let warnT msg v =
    (* Should not be called... *)
    Printf.eprintf "Warning: message %s found its way, something is wrong\n" msg;
    return v

  let bind_data = bind
  let bind_seq = bind
  let bind_ctrl = bind
  let appl_data m f = bind_data m (fun v -> return (f v))
  let debugT _s m = m
  let commit _ : unit m = ()

  let choice (c : value m) (m_true : 'b m) (m_false : 'b m) : 'b m =
    let open AST in
    bind c (function
      | NV_Literal (L_Bool true) -> m_true
      | NV_Literal (L_Bool false) -> m_false
      | v -> mismatch_type v [ T_Bool ])

  let delay m k = k m m

  let binop op v1 v2 =
    match (v1, v2) with
    | NV_Literal v1, NV_Literal v2 ->
        StaticInterpreter.binop_values dummy_annotated op v1 v2 |> nv_literal
    | NV_Literal _, v | v, _ ->
        mismatch_type v [ T_Bool; integer'; T_Real; default_t_bits ]

  let ternary = function
    | NV_Literal (L_Bool true) -> fun m_true _m_false -> m_true ()
    | NV_Literal (L_Bool false) -> fun _m_true m_false -> m_false ()
    | v -> mismatch_type v [ T_Bool ]

  let unop op v =
    match v with
    | NV_Literal v ->
        StaticInterpreter.unop_values dummy_annotated op v |> nv_literal
    | _ -> mismatch_type v [ T_Bool; integer'; T_Real; default_t_bits ]

  let on_write_identifier x scope value =
    if _log then
      Format.eprintf "Writing %a to %s in %a.@." pp_native_value value x
        PP.pp_scope scope

  let on_read_identifier x scope value =
    if _log then
      Format.eprintf "Reading %a from %s in %a.@." pp_native_value value x
        PP.pp_scope scope

  let v_tuple li = return (NV_Vector li)
  let v_record li = return (NV_Record (IMap.of_list li))
  let v_exception li = v_record li
  let non_tuple_exception v = mismatch_type v [ T_Tuple [] ]

  let doesnt_have_fields_exception v =
    mismatch_type v [ T_Record []; T_Exception [] ]

  let get_index i vec =
    match vec with
    | NV_Vector li -> List.nth li i |> return
    | v -> non_tuple_exception v

  let set_index i v vec =
    match vec with
    | NV_Vector li -> list_update i (Fun.const v) li |> v_tuple
    | v -> non_tuple_exception v

  let get_field name record =
    match record with
    | NV_Record map -> IMap.find name map
    | v -> doesnt_have_fields_exception v

  let set_field name v record =
    match record with
    | NV_Record li -> NV_Record (IMap.add name v li)
    | v -> doesnt_have_fields_exception v

  let create_vector = v_tuple
  let create_record = v_record
  let create_exception = v_exception

  let as_bitvector = function
    | NV_Literal (L_BitVector bits) -> bits
    | v -> mismatch_type v [ default_t_bits ]

  let as_int = function
    | NV_Literal (L_Int i) -> Z.to_int i
    | v -> mismatch_type v [ integer' ]

  let bitvector_to_value bv = L_BitVector bv |> nv_literal |> return
  let int_max x y = if x >= y then x else y

  let bad_slices positions =
    let slices =
      List.map
        (fun (start, length) ->
          Slice_Length (expr_of_int start, expr_of_int length))
        positions
    in
    Error.(fatal_unknown_pos (BadSlices (Dynamic, slices, 0)))

  let slices_to_positions positions =
    List.map
      (fun (start, length) ->
        let start = as_int start and length = as_int length in
        if start < 0 || length < 0 then bad_slices [ (start, length) ]
        else (start, length))
      positions
    |> slices_to_positions Fun.id

  let read_from_bitvector slices bv =
    let positions = slices_to_positions slices in
    let max_pos = List.fold_left int_max 0 positions in
    let () =
      List.iter
        (fun x -> if x < 0 then mismatch_type bv [ default_t_bits ])
        positions
    in
    let bv =
      match bv with
      | NV_Literal (L_BitVector bv) when Bitvector.length bv > max_pos -> bv
      | NV_Literal (L_Int i) -> Bitvector.of_z (max_pos + 1) i
      | _ ->
          mismatch_type bv
            [
              T_Bits
                ( E_CTC
                    ( E_Var "-" |> add_dummy_pos,
                      T_Int
                        (WellConstrained
                           [
                             Constraint_Range
                               (expr_of_int 0, expr_of_int max_pos);
                           ])
                      |> add_dummy_pos )
                  |> add_dummy_pos,
                  [] );
            ]
    in
    let res = Bitvector.extract_slice bv positions in
    bitvector_to_value res

  let write_to_bitvector slices src dst =
    let dst = as_bitvector dst
    and src = as_bitvector src
    and positions = slices_to_positions slices in
    Bitvector.write_slice dst src positions |> bitvector_to_value

  let concat_bitvectors bvs =
    let bvs = List.map as_bitvector bvs in
    Bitvector.concat bvs |> bitvector_to_value

  let bitvector_length bv =
    let bv = as_bitvector bv in
    Bitvector.length bv |> v_of_int

  let rec unknown_of_aggregate_type unknown_of_singular_type ~eval_expr_sef ty =
    let unknown_of_type =
      unknown_of_aggregate_type unknown_of_singular_type ~eval_expr_sef
    in
    match ty.desc with
    | T_Real | T_String | T_Bool | T_Bits _ | T_Int _ ->
        unknown_of_singular_type ~eval_expr_sef ty
    | T_Array (length, t) ->
        let n =
          match length with
          | ArrayLength_Enum (_, i) -> i
          | ArrayLength_Expr e -> (
              match eval_expr_sef e with
              | NV_Literal (L_Int n) -> Z.to_int n
              | _ -> (* Bad types *) assert false)
        in
        NV_Vector (List.init n (fun _ -> unknown_of_type t))
    | T_Record fields | T_Exception fields ->
        fields
        |> List.map (fun (field_name, t) -> (field_name, unknown_of_type t))
        |> IMap.of_list
        |> fun record -> NV_Record record
    | T_Enum li ->
        let n = List.length li |> expr_of_int in
        let range = Constraint_Range (expr_of_int 0, n) in
        let t = T_Int (WellConstrained [ range ]) |> add_pos_from ty in
        unknown_of_singular_type ~eval_expr_sef t
    | T_Tuple types -> NV_Vector (List.map (fun t -> unknown_of_type t) types)
    | T_Named _ -> Error.(fatal_from ty TypeInferenceNeeded)

  let deterministic_unknown_of_singular_type ~eval_expr_sef ty =
    match ty.desc with
    | T_Bool -> NV_Literal (L_Bool false)
    | T_String -> NV_Literal (L_String "")
    | T_Real -> NV_Literal (L_Real Q.zero)
    | T_Int UnConstrained -> NV_Literal (L_Int Z.zero)
    | T_Int
        (WellConstrained ((Constraint_Exact e | Constraint_Range (e, _)) :: _))
      ->
        eval_expr_sef e
    | T_Int (UnderConstrained (_, x)) ->
        eval_expr_sef (E_Var x |> add_pos_from ty)
    | T_Int (WellConstrained []) -> assert false
    | T_Bits (e, _) -> (
        match eval_expr_sef e with
        | NV_Literal (L_Int n) ->
            NV_Literal (L_BitVector (Bitvector.zeros (Z.to_int n)))
        | _ -> (* Bad types *) assert false)
    | T_Enum _ | T_Tuple _ | T_Array _ | T_Record _ | T_Exception _ | T_Named _
      ->
        assert false

  let deterministic_unknown_of_type ~eval_expr_sef =
    unknown_of_aggregate_type deterministic_unknown_of_singular_type
      ~eval_expr_sef

  let v_unknown_of_type ~eval_expr_sef ty =
    deterministic_unknown_of_type ~eval_expr_sef ty

  module Primitives = struct
    let return_one v = return [ return v ]

    let uint = function
      | [ NV_Literal (L_BitVector bv) ] ->
          L_Int (Bitvector.to_z_unsigned bv) |> nv_literal |> return_one
      | [ v ] -> mismatch_type v [ integer' ]
      | li ->
          Error.fatal_unknown_pos @@ Error.BadArity ("UInt", 1, List.length li)

    let sint = function
      | [ NV_Literal (L_BitVector bv) ] ->
          L_Int (Bitvector.to_z_signed bv) |> nv_literal |> return_one
      | [ v ] -> mismatch_type v [ default_t_bits ]
      | li ->
          Error.fatal_unknown_pos @@ Error.BadArity ("SInt", 1, List.length li)

    let dec_str = function
      | [ NV_Literal (L_Int i) ] ->
          L_String (Z.to_string i) |> nv_literal |> return_one
      | [ v ] -> mismatch_type v [ integer' ]
      | li ->
          Error.fatal_unknown_pos @@ Error.BadArity ("DecStr", 1, List.length li)

    let hex_str = function
      | [ NV_Literal (L_Int i) ] ->
          L_String (Printf.sprintf "%a" Z.sprint i) |> nv_literal |> return_one
      | [ v ] -> mismatch_type v [ integer' ]
      | li ->
          Error.fatal_unknown_pos @@ Error.BadArity ("DecStr", 1, List.length li)

    let ascii_range = Constraint_Range (!$0, !$127)
    let ascii_integer = T_Int (WellConstrained [ ascii_range ])

    let ascii_str =
      let open! Z in
      function
      | [ NV_Literal (L_Int i) ] when geq zero i && leq ~$127 i ->
          L_String (char_of_int (Z.to_int i) |> String.make 1)
          |> nv_literal |> return_one
      | [ v ] -> mismatch_type v [ ascii_integer ]
      | li ->
          Error.fatal_unknown_pos @@ Error.BadArity ("DecStr", 1, List.length li)

    let log2 = function
      | [ NV_Literal (L_Int i) ] when Z.gt i Z.zero ->
          [ L_Int (Z.log2 i |> Z.of_int) |> nv_literal ]
      | [ v ] -> mismatch_type v [ integer' ]
      | li ->
          Error.fatal_unknown_pos @@ Error.BadArity ("Log2", 1, List.length li)

    let int_to_real = function
      | [ NV_Literal (L_Int i) ] ->
          L_Real (Q.of_bigint i) |> nv_literal |> return_one
      | [ v ] -> mismatch_type v [ integer' ]
      | li ->
          Error.fatal_unknown_pos @@ Error.BadArity ("Real", 1, List.length li)

    let truncate q = Q.to_bigint q

    let floor q =
      if Q.sign q = -1 then
        if Q.den q = Z.one then Q.num q else truncate q |> Z.pred
      else truncate q

    let ceiling q =
      if Q.sign q = 1 then
        if Q.den q = Z.one then Q.num q else truncate q |> Z.succ
      else truncate q

    let wrap_real_to_int name f = function
      | [ NV_Literal (L_Real q) ] -> L_Int (f q) |> nv_literal |> return_one
      | [ v ] -> mismatch_type v [ T_Real ]
      | li -> Error.fatal_unknown_pos @@ Error.BadArity (name, 1, List.length li)

    let round_down = wrap_real_to_int "RoundDown" floor
    let round_up = wrap_real_to_int "RoundUp" ceiling
    let round_towards_zero = wrap_real_to_int "RoundTowardsZero" truncate

    let primitives =
      let e_var x = E_Var x |> add_dummy_pos in
      let eoi i = expr_of_int i in
      let binop = ASTUtils.binop in
      let minus_one e = binop MINUS e (eoi 1) in
      let pow_2 = binop POW (eoi 2) in
      let neg e = E_Unop (NEG, e) |> add_pos_from e in
      (* [t_bits "N"] is the bitvector type of length [N]. *)
      let t_bits x = T_Bits (e_var x, []) |> add_dummy_pos in
      (* [t_int_ctnt e1 e2] is [integer {e1..e2}] *)
      let t_int_ctnt e1 e2 =
        T_Int (WellConstrained [ Constraint_Range (e1, e2) ]) |> add_dummy_pos
      in
      (* [p ~parameters ~args ~returns name f] declares a primtive named [name]
         with body [f], and signature specified by [parameters] [args] and
         [returns]. *)
      let p ?(parameters = []) ~args ?returns name f =
        let subprogram_type =
          match returns with None -> ST_Procedure | _ -> ST_Function
        in
        let body = SB_Primitive and return_type = returns in
        ({ name; parameters; args; body; return_type; subprogram_type }, f)
      in
      [
        (let two_pow_n_minus_one = minus_one (pow_2 (e_var "N")) in
         let returns = t_int_ctnt (eoi 0) two_pow_n_minus_one in
         p
           ~parameters:[ ("N", None) ]
           ~args:[ ("x", t_bits "N") ]
           ~returns "UInt" uint);
        (let two_pow_n_minus_one = pow_2 (minus_one (e_var "N")) in
         let minus_two_pow_n_minus_one = neg two_pow_n_minus_one
         and two_pow_n_minus_one_minus_one = minus_one two_pow_n_minus_one in
         let returns =
           t_int_ctnt minus_two_pow_n_minus_one two_pow_n_minus_one_minus_one
         in
         p
           ~parameters:[ ("N", None) ]
           ~args:[ ("x", t_bits "N") ]
           ~returns "SInt" sint);
        p ~args:[ ("x", integer) ] ~returns:string "DecStr" dec_str;
        p ~args:[ ("x", integer) ] ~returns:string "HexStr" hex_str;
        p ~args:[ ("x", integer) ] ~returns:string "AsciiStr" ascii_str;
        p ~args:[ ("x", integer) ] ~returns:integer "Log2" log2;
        p ~args:[ ("x", integer) ] ~returns:real "Real" int_to_real;
        p ~args:[ ("x", real) ] ~returns:integer "RoundDown" round_down;
        p ~args:[ ("x", real) ] ~returns:integer "RoundUp" round_up;
        p
          ~args:[ ("x", real) ]
          ~returns:integer "RoundTowardsZero" round_towards_zero;
      ]
  end

  let primitives = Primitives.primitives
end

let primitive_decls =
  List.map (fun (f, _) -> D_Func f |> add_dummy_pos) NativeBackend.primitives

module NativeInterpreter (C : Interpreter.Config) =
  Interpreter.Make (NativeBackend) (C)

let exit_value = function
  | NV_Literal (L_Int i) -> i |> Z.to_int
  | v -> mismatch_type v [ integer' ]

let instrumentation_buffer = function
  | Some true ->
      (module Instrumentation.SemanticsSingleSetBuffer
      : Instrumentation.SEMBUFFER)
  | Some false | None ->
      (module Instrumentation.SemanticsNoBuffer : Instrumentation.SEMBUFFER)

let interprete strictness ?instrumentation ?static_env ast =
  let module B = (val instrumentation_buffer instrumentation) in
  let module C : Interpreter.Config = struct
    let type_checking_strictness = strictness
    let unroll = 0

    module Instr = Instrumentation.SemMake (B)
  end in
  let module I = NativeInterpreter (C) in
  B.reset ();
  let res =
    match static_env with
    | Some static_env -> I.run_typed ast static_env
    | None -> I.run ast
  in
  (exit_value res, B.get ())
OCaml

Innovation. Community. Security.