package frama-c

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file logic.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
(**************************************************************************)
(*                                                                        *)
(*  This file is part of WP plug-in of Frama-C.                           *)
(*                                                                        *)
(*  Copyright (C) 2007-2024                                               *)
(*    CEA (Commissariat a l'energie atomique et aux energies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)

(* -------------------------------------------------------------------------- *)
(** {1 First Order Logic Definition}                                          *)
(* -------------------------------------------------------------------------- *)

type 'a element =
  | E_none
  | E_true
  | E_false
  | E_int of int
  | E_fun of 'a * 'a element list

(** Algebraic properties for user operators. *)
type 'a operator = {
  invertible : bool ; (* x+y = x+z <-> y=z (on both side) *)
  associative : bool ; (* x+(y+z)=(x+y)+z *)
  commutative : bool ; (* x+y=y+x *)
  idempotent : bool ; (* x+x = x *)
  neutral : 'a element ;
  absorbant : 'a element ;
}

(** Algebraic properties for functions. *)
type 'a category =
  | Function      (** logic function *)
  | Constructor   (** [f xs = g ys] iff [f=g && xi=yi] *)
  | Injection     (** [f xs = f ys] iff [xi=yi] *)
  | Operator of 'a operator

(** Quantifiers and Binders *)
type binder =
  | Forall
  | Exists
  | Lambda

type ('f,'a) datatype =
  | Prop
  | Bool
  | Int
  | Real
  | Tvar of int (** ranges over [1..arity] *)
  | Array of ('f,'a) datatype * ('f,'a) datatype
  | Record of ('f *  ('f,'a) datatype) list
  | Data of 'a * ('f,'a) datatype list

type sort =
  | Sprop
  | Sbool
  | Sint
  | Sreal
  | Sdata
  | Sarray of sort

type maybe = Yes | No | Maybe

(** Ordered, hash-able and pretty-printable symbols *)
module type Symbol =
sig
  type t
  val hash : t -> int
  val equal : t -> t -> bool
  val compare : t -> t -> int
  val pretty : Format.formatter -> t -> unit
  val debug : t -> string (** for printing during debug *)
end

(** {2 Abstract Data Types} *)
module type Data =
sig
  include Symbol
  val basename : t -> string (** hint for generating fresh names *)
end

(** {2 Field for Record Types} *)
module type Field =
sig
  include Symbol
  val sort : t -> sort (** of field *)
end

(** {2 User Defined Functions} *)
module type Function =
sig
  include Symbol
  val category : t -> t category
  val params : t -> sort list
  (** params ; exceeding params use Sdata *)

  val sort : t -> sort
  (** result *)
end

(** {2 Bound Variables} *)
module type Variable =
sig
  include Symbol
  val sort : t -> sort
  val basename : t -> string
  val dummy : t
end

(** {2 Representation of Patterns, Functions and Terms} *)

type ('f,'a) funtype = {
  result : ('f,'a) datatype ; (** Type of returned value *)
  params : ('f,'a) datatype list ; (** Type of parameters *)
}

(** representation of terms. type arguments are the following:
    - 'z: representation of integral constants
    - 'f: representation of fields
    - 'a: representation of abstract data types
    - 'd: representation of functions
    - 'x: representation of free variables
    - 'b: representation of bound term (phantom type equal to 'e)
    - 'e: sub-expression
*)
type ('f,'a,'d,'x,'b,'e) term_repr =
  | True
  | False
  | Kint  of Z.t
  | Kreal of Q.t
  | Times of Z.t * 'e      (** mult: k1 * e2 *)
  | Add   of 'e list      (** add:  e11 + ... + e1n *)
  | Mul   of 'e list      (** mult: e11 * ... * e1n *)
  | Div   of 'e * 'e
  | Mod   of 'e * 'e
  | Eq    of 'e * 'e
  | Neq   of 'e * 'e
  | Leq   of 'e * 'e
  | Lt    of 'e * 'e
  | Aget  of 'e * 'e      (** access: array1[idx2] *)
  | Aset  of 'e * 'e * 'e (** update: array1[idx2 -> elem3] *)
  | Acst  of ('f,'a) datatype * 'e (** constant array [ type -> value ] *)
  | Rget  of 'e * 'f
  | Rdef  of ('f * 'e) list
  | And   of 'e list      (** and: e11 && ... && e1n *)
  | Or    of 'e list      (** or:  e11 || ... || e1n *)
  | Not   of 'e
  | Imply of 'e list * 'e (** imply: (e11 && ... && e1n) ==> e2 *)
  | If    of 'e * 'e * 'e (** ite: if c1 then e2 else e3 *)
  | Fun   of 'd * 'e list (** Complete call (no partial app.) *)
  | Fvar  of 'x
  | Bvar  of int * ('f,'a) datatype
  | Apply of 'e * 'e list (** High-Order application (Cf. binder) *)
  | Bind  of binder * ('f,'a) datatype * 'b

type 'a affine = Z.t * (Z.t * 'a) list

(** {2 Formulae} *)
module type Term =
sig

  module ADT : Data
  module Field : Field
  module Fun : Function
  module Var : Variable

  type term
  type lc_term
  (** Loosely closed terms. *)

  module Term : Symbol with type t = term

  (** Non-structural, machine dependent,
      but fast comparison and efficient merges *)
  module Tset : Idxset.S with type elt = term

  (** Non-structural, machine dependent,
      but fast comparison and efficient merges *)
  module Tmap : Idxmap.S with type key = term

  (** Structuraly ordered, but less efficient access and non-linear merges *)
  module STset : Set.S with type elt = term

  (** Structuraly ordered, but less efficient access and non-linear merges *)
  module STmap : Map.S with type key = term

  (** {3 Variables} *)

  type var = Var.t
  type tau = (Field.t,ADT.t) datatype

  module Tau : Data with type t = tau
  module Vars : Idxset.S with type elt = var
  module Vmap : Idxmap.S with type key = var

  type pool
  val pool : ?copy:pool -> unit -> pool

  val add_var : pool -> var -> unit
  val add_vars : pool -> Vars.t -> unit
  val add_term : pool -> term -> unit

  val fresh : pool -> ?basename:string -> tau -> var
  val alpha : pool -> var -> var

  val tau_of_var : var -> tau
  val sort_of_var : var -> sort
  val base_of_var : var -> string

  (** {3 Terms} *)

  type 'a expression = (Field.t,ADT.t,Fun.t,var,lc_term,'a) term_repr

  type repr = term expression

  type record = (Field.t * term) list

  val decide   : term -> bool
  (** Return [true] if and only the term is [e_true]. Constant time. *)

  val is_true  : term -> maybe
  (** Constant time. *)

  val is_false : term -> maybe
  (** Constant time. *)

  val is_prop  : term -> bool
  (** Boolean or Property *)

  val is_int   : term -> bool
  (** Integer sort *)

  val is_real  : term -> bool
  (** Real sort *)

  val is_arith : term -> bool
  (** Integer or Real sort *)

  val are_equal : term -> term -> maybe
  (** Computes equality *)

  val eval_eq   : term -> term -> bool
  (** Same as [are_equal] is [Yes] *)

  val eval_neq  : term -> term -> bool
  (** Same as [are_equal] is [No]  *)

  val eval_lt   : term -> term -> bool
  (** Same as [e_lt] is [e_true] *)

  val eval_leq  : term -> term -> bool
  (** Same as [e_leq] is [e_true]  *)

  val repr : term -> repr
  (** Constant time *)

  val sort : term -> sort
  (** Constant time *)

  val vars : term -> Vars.t
  (** Constant time *)

  (** Path-positioning access

      This part of the API is DEPRECATED
  *)

  type path = int list (** position of a subterm in a term. *)

  (** {3 Basic constructors} *)

  val e_true : term
  val e_false : term
  val e_bool : bool -> term
  val e_literal : bool -> term -> term
  val e_int : int -> term
  val e_float : float -> term
  val e_zint : Z.t -> term
  val e_real : Q.t -> term
  val e_var : var -> term
  val e_opp : term -> term
  val e_times : Z.t -> term -> term
  val e_sum : term list -> term
  val e_prod : term list -> term
  val e_add : term -> term -> term
  val e_sub : term -> term -> term
  val e_mul : term -> term -> term
  val e_div : term -> term -> term
  val e_mod : term -> term -> term
  val e_eq  : term -> term -> term
  val e_neq : term -> term -> term
  val e_leq : term -> term -> term
  val e_lt  : term -> term -> term
  val e_imply : term list -> term -> term
  val e_equiv : term -> term -> term
  val e_and   : term list -> term
  val e_or    : term list -> term
  val e_not   : term -> term
  val e_if    : term -> term -> term -> term
  val e_const : tau -> term -> term
  val e_get   : term -> term -> term
  val e_set   : term -> term -> term -> term
  val e_getfield : term -> Field.t -> term
  val e_record : record -> term
  val e_fun : ?result:tau -> Fun.t -> term list -> term
  val e_repr : ?result:tau -> repr -> term
  (** @raise Invalid_argument on [Bvar] and [Bind] *)

  (** {3 Quantifiers and Binding} *)

  val e_forall : var list -> term -> term
  val e_exists : var list -> term -> term
  val e_lambda : var list -> term -> term
  val e_close_forall : term -> term
  val e_close_exists : term -> term
  val e_close_lambda : term -> term
  val e_apply : term -> term list -> term

  val e_bind : binder -> var -> term -> term
  (** Bind the given variable if it appears free in the term,
      or return the term unchanged. *)

  val e_unbind : var -> lc_term -> term
  (** Opens the top-most bound variable with a (fresh) variable.
      Can be only applied on top-most lc-term from `Bind(_,_,_)`,
      thanks to typing. *)

  val e_open : pool:pool -> ?forall:bool -> ?exists:bool -> ?lambda:bool ->
    term -> (binder * var) list * term
  (** Open all the specified binders (flags default to `true`, so all
      consecutive top most binders are opened by default).
      The pool must contain all free variables of the term. *)

  val e_close : (binder * var) list -> term -> term
  (** Closes all specified binders *)

  (** {3 Generalized Substitutions} *)

  type sigma
  val sigma : ?pool:pool -> unit -> sigma

  module Subst :
  sig
    type t = sigma
    val create : ?pool:pool -> unit -> t
    val copy : sigma -> sigma

    val fresh : t -> tau -> var
    val find : t -> term -> term
    val filter : t -> term -> bool

    val add : t -> term -> term -> unit
    (** Must bind lc-closed terms, or raise Invalid_argument *)

    val add_fun : t -> (term -> term) -> unit
    (** Must bind lc-closed terms, or raise Invalid_argument *)

    val add_filter : t -> (term -> bool) -> unit
    (** Only modifies terms that {i pass} the filter. *)

    val add_var : t -> var -> unit
    (** To the pool *)

    val add_vars : t -> Vars.t -> unit
    (** To the pool *)

    val add_term : t -> term -> unit
    (** To the pool *)
  end

  val e_subst : sigma -> term -> term
  (**
     The environment sigma must be prepared with the desired substitution.
     Its pool of fresh variables must covers the entire domain and co-domain
     of the substitution, and the transformed values.
  *)

  val e_subst_var : var -> term -> term -> term

  (** {3 Locally Nameless Representation}

      These functions can be {i unsafe} because they might expose terms
      that contains non-bound b-vars. Never use such terms to build
      substitutions (sigma).
  *)

  val lc_vars : term -> Bvars.t
  val lc_closed : term -> bool
  (** All bound variables are under their binder *)

  val lc_repr : lc_term -> term
  (** Calling this function is {i unsafe} unless the term is lc_closed *)

  val lc_iter : (term -> unit) -> term -> unit
  (** Similar to [f_iter] but exposes non-closed sub-terms of `Bind`
      as regular [term] values instead of [lc_term] ones. *)

  (** {3 Iteration Scheme} *)

  val f_map  : ?pool:pool -> ?forall:bool -> ?exists:bool -> ?lambda:bool
    -> (term -> term) -> term -> term
  (** Pass and open binders, maps its direct sub-terms
      and then close then opened binders
      Raises Invalid_argument in case of a bind-term without pool.
      The optional pool must contain all free variables of the term. *)

  val f_iter : ?pool:pool -> ?forall:bool -> ?exists:bool -> ?lambda:bool
    -> (term -> unit) -> term -> unit
  (** Iterates over its direct sub-terms (pass and open binders)
      Raises Invalid_argument in case of a bind-term without pool.
      The optional pool must contain all free variables of the term. *)

  (** {3 Partial Typing} *)

  (** Try to extract a type of term.
      Parameterized by optional extractors for field and functions.
      Extractors may raise [Not_found] ; however, they are only used when
      the provided kinds for fields and functions are not precise enough.
      @param field type of a field value
      @param record type of the record containing a field
      @param call type of the values returned by the function
      @raise Not_found if no type is found. *)
  val typeof :
    ?field:(Field.t -> tau) ->
    ?record:(Field.t -> tau) ->
    ?call:(Fun.t -> tau option list -> tau) -> term -> tau

  (** {3 Support for Builtins} *)

  val set_builtin : ?force: bool -> Fun.t -> (term list -> term) -> unit
  (** Register a simplifier for function [f]. The computation code
        may raise [Not_found], in which case the symbol is not interpreted.

        If [f] is an operator with algebraic rules (see type
        [operator]), the children are normalized {i before} builtin
        call.

        Highest priority is [0].
        Recursive calls must be performed on strictly smaller terms.

        The [force] parameters defaults to [false], when it is [true], if there
        exist another builtin, it is replaced with the new one. Use with care.

        @before 22.0-Titanium the optional [force] parameter does not exist
  *)

  val set_builtin' :
    ?force: bool -> Fun.t -> (term list -> tau option -> term) -> unit

  val set_builtin_map :
    ?force: bool ->  Fun.t -> (term list -> term list) -> unit
  (** Register a builtin for rewriting [f a1..an] into [f b1..bm].

      This is short cut for [set_builtin], where the head application of [f] avoids
      to run into an infinite loop.

      The [force] parameters defaults to [false], when it is [true], if there
      exist another builtin, it is replaced with the new one. Use with care.

      @before 22.0-Titanium the optional [force] parameter does not exist
  *)

  val set_builtin_get :
    ?force: bool -> Fun.t -> (term list -> term list -> term) -> unit
  (** [set_builtin_get f rewrite] register a builtin
      for rewriting [(f a1..an)[k1]..[km]] into [rewrite (a1..an) (k1..km)].

      The [force] parameters defaults to [false], when it is [true], if there
      exist another builtin, it is replaced with the new one. Use with care.

      @before 22.0-Titanium the optional [force] parameter does not exist
      @before 28.0-Nickel one-dimensional access only
  *)

  val set_builtin_field :
    ?force: bool -> Fun.t -> Field.t -> (term list -> term) -> unit
  (** Register a builtin for simplifying [(f e…).fd] expressions.
        {b Must} only use recursive comparison for strictly smaller terms.

        The [force] parameters defaults to [false], when it is [true], if there
        exist another builtin, it is replaced with the new one. Use with care.

        @since 28.0-Nickel
  *)

  val set_builtin_eq :
    ?force: bool -> Fun.t -> (term -> term -> term) -> unit
  (** Register a builtin equality for comparing any term with head-symbol.
        {b Must} only use recursive comparison for strictly smaller terms.
        The recognized term with head function symbol is passed first.

        Highest priority is [0].
        Recursive calls must be performed on strictly smaller terms.

        The [force] parameters defaults to [false], when it is [true], if there
        exist another builtin, it is replaced with the new one. Use with care.

        @before 22.0-Titanium the optional [force] parameter does not exist
  *)

  val set_builtin_leq :
    ?force: bool -> Fun.t -> (term -> term -> term) -> unit
  (** Register a builtin for comparing any term with head-symbol.
        {b Must} only use recursive comparison for strictly smaller terms.
        The recognized term with head function symbol can be on both sides.
        Strict comparison is automatically derived from the non-strict one.

        Highest priority is [0].
        Recursive calls must be performed on strictly smaller terms.

        The [force] parameters defaults to [false], when it is [true], if there
        exist another builtin, it is replaced with the new one. Use with care.

        @before 22.0-Titanium the optional [force] parameter does not exist
  *)

  (** {3 Specific Patterns} *)

  val consequence : term -> term -> term
  (** Knowing [h], [consequence h a] returns [b] such that [h -> (a<->b)] *)

  val literal : term -> bool * term

  val affine : term -> term affine
  val record_with : record -> (term * record) option

  (** {3 Symbol} *)

  type t = term
  val id : t -> int
  (** unique identifier (stored in t) *)

  val hash : t -> int
  (** constant access (stored in t) *)

  val equal : t -> t -> bool
  (** physical equality *)

  val compare : t -> t -> int
  (** atoms are lower than complex terms ; otherwise, sorted by id. *)

  val pretty : Format.formatter -> t -> unit
  val weigth : t -> int
  (** Informal size *)

  (** {3 Utilities} *)

  val is_closed : t -> bool
  (** No bound variables *)

  val is_simple : t -> bool
  (** Constants, variables, functions of arity 0 *)

  val is_atomic : t -> bool
  (** Constants and variables *)

  val is_primitive : t -> bool
  (** Constants only *)

  val is_neutral : Fun.t -> t -> bool
  val is_absorbant : Fun.t -> t -> bool

  val size : t -> int
  val basename : t -> string

  val debug : Format.formatter -> t -> unit
  val pp_id : Format.formatter -> t -> unit
  (** internal id *)

  val pp_rid : Format.formatter -> t -> unit
  (** head symbol with children id's *)

  val pp_repr : Format.formatter -> repr -> unit
  (** head symbol with children id's *)

  (** {2 Shared sub-terms} *)

  val is_subterm : term -> term -> bool
  (** Occurrence check. [is_subterm a b] returns [true] iff [a] is a subterm
      of [b]. Optimized {i wrt} shared subterms, term size, and term
      variables. *)

  val shared :
    ?shared:(term -> bool) ->
    ?shareable:(term -> bool) ->
    ?subterms:((term -> unit) -> term -> unit) ->
    term list -> term list
  (** Computes the sub-terms that appear several times.
        [shared marked linked e] returns the shared subterms of [e].

        The list of shared subterms is consistent with
        order of definition: each trailing terms only depend on heading ones.

        The traversal is controlled by two optional arguments:
      - [shared] those terms are not traversed (considered as atomic, default to none)
      - [shareable] those terms ([is_simple] excepted) that can be shared (default to all)
      - [subterms] those sub-terms a term to be considered during
          traversal ([lc_iter] by default)
  *)

  (** Low-level shared primitives: [shared] is actually a combination of
      building marks, marking terms, and extracting definitions:

      {[ let share ?... e =
           let m = marks ?... () in
           List.iter (mark m) es ;
           defs m ]} *)

  type marks

  (** Create a marking accumulator.
      Same defaults than [shared]. *)

  val marks :
    ?shared:(term -> bool) ->
    ?shareable:(term -> bool) ->
    ?subterms:((term -> unit) -> term -> unit) ->
    unit -> marks

  (** Mark a term to be printed *)
  val mark : marks -> term -> unit

  (** Mark a term to be explicitly shared *)
  val share : marks -> term -> unit

  (** Returns a list of terms to be shared among all {i shared} or {i
      marked} subterms.  The order of terms is consistent with
      definition order: head terms might be used in tail ones. *)
  val defs : marks -> term list

end
OCaml

Innovation. Community. Security.