package ff
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Source file ff.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
(** General module signature for a finite field *) module type T = sig type t val order : Z.t (** The order of the finite field *) val size_in_bytes : int (** minimal number of bytes required to encode a value of the field. *) val zero : t (** The neutral element for the addition *) val one : t (** The neutral element for the multiplication *) val is_zero : t -> bool (** [is_zero x] returns [true] if [x] is the neutral element for the addition *) val is_one : t -> bool (** [is_one x] returns [true] if [x] is the neutral element for the multiplication *) val random : unit -> t (** [random ()] returns a random element of the field *) val non_null_random : unit -> t (** [non_null_random ()] returns a non null random element of the field *) val add : t -> t -> t (** [add a b] returns [a + b mod order] *) val ( + ) : t -> t -> t (** Infix operator for [add] *) val mul : t -> t -> t (** [mul a b] returns [a * b mod order] *) val ( * ) : t -> t -> t (** Infix operator for [mul] *) val eq : t -> t -> bool (** [eq a b] returns [true] if [a = b mod order], else [false] *) val ( = ) : t -> t -> bool (** Infix operator for [eq] *) val negate : t -> t (** [negate x] returns [-x mod order]. Equivalently, [negate x] returns the unique [y] such that [x + y mod order = 0] *) val ( - ) : t -> t (** Infix operator for [negate] *) val inverse_exn : t -> t (** [inverse_exn x] returns [x^-1] if [x] is not [0], else raise [Division_by_zero] *) val inverse_opt : t -> t option (** [inverse_opt x] returns [x^-1] if [x] is not [0] as an option, else [None] *) val div_exn : t -> t -> t (** [div_exn a b] returns [a * b^-1]. Raise [Division_by_zero] if [b = zero] *) val div_opt : t -> t -> t option (** [div_opt a b] returns [a * b^-1] as an option. Return [None] if [b = zero] *) val ( / ) : t -> t -> t (** Infix operator for [div_exn] *) val square : t -> t (** [square x] returns [x^2] *) val double : t -> t (** [double x] returns [2x] *) val pow : t -> Z.t -> t (** [pow x n] returns [x^n] *) val ( ** ) : t -> Z.t -> t (** Infix operator for [pow] *) val of_string : string -> t (** Create a value t from a predefined string representation. It is not required that to_string of_string t = t. By default, decimal representation of the number is used, modulo the order of the field *) val to_string : t -> string (** String representation of a value t. It is not required that to_string of_string t = t. By default, decimal representation of the number is used *) val of_bytes : Bytes.t -> t (** From a predefined bytes representation, construct a value t. It is not required that to_bytes of_bytes t = t. By default, little endian encoding is used and the given element is modulo the prime order *) val to_bytes : t -> Bytes.t (** Convert the value t to a bytes representation which can be used for hashing for instance. It is not required that to_bytes of_bytes t = t. By default, little endian encoding is used, and length of the resulting bytes may vary depending on the order. *) val get_nth_root_of_unity : Z.t -> t (** Returns a nth root of unity *) val is_nth_root_of_unity : Z.t -> t -> bool (** [is_nth_root_of_unity n x] returns [true] if [x] is a nth-root of unity*) val of_z : Z.t -> t (** [of_z x] builds an element t from the Zarith element x. [mod order] is applied if [x > order] *) val to_z : t -> Z.t (** [to_z x] builds a Zarith element, using the decimal representation. Arithmetic on the result can be done using the modular functions on integer *) end module MakeFp (S : sig val prime_order : Z.t end) : T = struct type t = Z.t let order = assert (S.prime_order >= Z.of_string "2") ; S.prime_order let log256 n = log n /. log 256. let size_in_bytes = int_of_float (log256 (Z.to_float order)) + 1 let zero = Z.zero let one = Z.one let is_zero s = Z.equal (Z.erem s order) Z.zero let is_one s = Z.equal (Z.erem s order) Z.one let random () = Random.self_init () ; let r = Bytes.init size_in_bytes (fun _ -> char_of_int (Random.int 256)) in Z.erem (Z.of_bits (Bytes.to_string r)) order let rec non_null_random () = let r = random () in if is_zero r then non_null_random () else r let add a b = Z.erem (Z.add a b) order let ( + ) = add let mul a b = Z.erem (Z.mul a b) order let ( * ) = mul let eq a b = Z.equal (Z.erem a order) (Z.erem b order) let ( = ) = eq let negate a = Z.sub order a let ( - ) = negate let inverse_exn a = if a = zero then raise Division_by_zero else Z.invert a order let inverse_opt a = try Some (Z.invert a order) with Division_by_zero -> None let div_exn a b = if b = zero then raise Division_by_zero else mul a (inverse_exn b) let div_opt a b = if b = zero then None else Some (mul a (inverse_exn b)) let ( / ) = div_exn let square x = Z.mul x x let double x = Z.add x x let two_z = Z.succ Z.one let rec pow x n = if Z.equal n Z.zero then one else if is_zero x then zero else if Z.equal n Z.one then x else let n = Z.erem n (Z.pred order) in let (a, r) = Z.ediv_rem n two_z in let acc = pow x a in let acc_square = mul acc acc in if Z.equal r Z.zero then acc_square else mul acc_square x let ( ** ) = pow (* Decimal representation by default *) let of_string s = Z.erem (Z.of_string s) order (* Decimal representation by default *) let to_string s = Z.to_string s (* Bytes must be in little endian *) let of_bytes s = Z.erem (Z.of_bits (Bytes.to_string s)) order (* Little endian representation *) let to_bytes s = let b = Bytes.of_string (Z.to_bits s) in let res = Bytes.create size_in_bytes in Bytes.blit b 0 res 0 (min (Bytes.length b) size_in_bytes) ; res let rec get_nth_root_of_unity n = if not (Z.equal (Z.erem (Z.pred order) n) Z.zero) then failwith "n must divide the order of the multiplicate group" else let r = random () in if (not (eq r zero)) && eq (pow (pow r (Z.div (Z.pred order) n)) n) one then r else get_nth_root_of_unity n let is_nth_root_of_unity n x = if not (Z.equal (Z.erem (Z.pred order) n) Z.zero) then failwith "n must divide the order of the multiplicate group" else (not (eq x zero)) && eq (pow (pow x (Z.div (Z.pred order) n)) n) one let to_z t = t let of_z t = Z.erem t order end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>