Source file expr.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
open Ty
type t =
{ e : expr
; ty : Ty.t
}
and expr =
| Val of Value.t
| Ptr of int32 * t
| Unop of unop * t
| Binop of binop * t * t
| Triop of triop * t * t * t
| Relop of relop * t * t
| Cvtop of cvtop * t
| Symbol of Symbol.t
| Concat of t * t
let ( @: ) e ty = { e; ty }
let mk_symbol s = Symbol s @: Symbol.type_of s
let is_num e = match e.e with Val (Num _) -> true | _ -> false
let rec equal (e1 : t) (e2 : t) : bool =
if not (e1.ty = e2.ty) then false
else
match (e1.e, e2.e) with
| Val v1, Val v2 -> Value.equal v1 v2
| Ptr (b1, o1), Ptr (b2, o2) -> b1 = b2 && equal o1 o2
| Unop (op1, e1), Unop (op2, e2) -> op1 = op2 && equal e1 e2
| Cvtop (op1, e1), Cvtop (op2, e2) -> op1 = op2 && equal e1 e2
| Binop (op1, e1, e3), Binop (op2, e2, e4) ->
op1 = op2 && equal e1 e2 && equal e3 e4
| Relop (op1, e1, e3), Relop (op2, e2, e4) ->
op1 = op2 && equal e1 e2 && equal e3 e4
| Triop (op1, e1, e3, e5), Triop (op2, e2, e4, e6) ->
op1 = op2 && equal e1 e2 && equal e3 e4 && equal e5 e6
| Symbol s1, Symbol s2 -> Symbol.equal s1 s2
| Extract (e1, h1, l1), Extract (e2, h2, l2) ->
equal e1 e2 && h1 = h2 && l1 = l2
| Concat (e1, e3), Concat (e2, e4) -> equal e1 e2 && equal e3 e4
| _ -> false
let get_symbols e =
let tbl = Hashtbl.create 64 in
let rec symbols e =
match e.e with
| Val _ -> ()
| Ptr (_, offset) -> symbols offset
| Unop (_, e1) -> symbols e1
| Binop (_, e1, e2) ->
symbols e1;
symbols e2
| Triop (_, e1, e2, e3) ->
symbols e1;
symbols e2;
symbols e3
| Relop (_, e1, e2) ->
symbols e1;
symbols e2
| Cvtop (_, e) -> symbols e
| Symbol s -> Hashtbl.replace tbl s ()
| Extract (e, _, _) -> symbols e
| Concat (e1, e2) ->
symbols e1;
symbols e2
in
List.iter symbols e;
Hashtbl.fold (fun k () acc -> k :: acc) tbl []
let negate_relop ({ e; ty } : t) : (t, string) Result.t =
let e =
match e with
| Relop (Eq, e1, e2) -> Ok (Relop (Ne, e1, e2))
| Relop (Ne, e1, e2) -> Ok (Relop (Eq, e1, e2))
| Relop (Lt, e1, e2) -> Ok (Relop (Ge, e1, e2))
| Relop (LtU, e1, e2) -> Ok (Relop (GeU, e1, e2))
| Relop (Le, e1, e2) -> Ok (Relop (Gt, e1, e2))
| Relop (LeU, e1, e2) -> Ok (Relop (GtU, e1, e2))
| Relop (Gt, e1, e2) -> Ok (Relop (Le, e1, e2))
| Relop (GtU, e1, e2) -> Ok (Relop (LeU, e1, e2))
| Relop (Ge, e1, e2) -> Ok (Relop (Lt, e1, e2))
| Relop (GeU, e1, e2) -> Ok (Relop (LtU, e1, e2))
| _ -> Error "negate_relop: not a relop."
in
Result.map (fun relop -> relop @: ty) e
module Pp = struct
let fprintf = Format.fprintf
let rec pp fmt ({ e; ty } : t) =
match e with
| Val v -> Value.pp fmt v
| Ptr (base, offset) -> fprintf fmt "(Ptr (i32 %ld) %a)" base pp offset
| Unop (op, e) -> fprintf fmt "(%a.%a %a)" Ty.pp ty pp_unop op pp e
| Binop (op, e1, e2) ->
fprintf fmt "(%a.%a %a %a)" Ty.pp ty pp_binop op pp e1 pp e2
| Triop (op, e1, e2, e3) ->
fprintf fmt "(%a.%a %a %a %a)" Ty.pp ty pp_triop op pp e1 pp e2 pp e3
| Relop (op, e1, e2) ->
fprintf fmt "(%a.%a %a %a)" Ty.pp ty pp_relop op pp e1 pp e2
| Cvtop (op, e) -> fprintf fmt "(%a.%a %a)" Ty.pp ty pp_cvtop op pp e
| Symbol s -> Symbol.pp fmt s
| Extract (e, h, l) -> fprintf fmt "(extract %a %d %d)" pp e l h
| Concat (e1, e2) -> fprintf fmt "(++ %a %a)" pp e1 pp e2
let pp_list fmt (es : t list) =
Format.pp_print_list ~pp_sep:Format.pp_print_space pp fmt es
let pp_smt fmt (es : t list) : unit =
let pp_symbols fmt syms =
Format.pp_print_list ~pp_sep:Format.pp_print_newline
(fun fmt sym ->
let t = Symbol.type_of sym in
fprintf fmt "(declare-fun %a %a)" Symbol.pp sym Ty.pp t )
fmt syms
in
let pp_asserts fmt es =
Format.pp_print_list ~pp_sep:Format.pp_print_newline
(fun fmt e -> fprintf fmt "(assert @[<h 2>%a@])" pp e)
fmt es
in
let syms = get_symbols es in
fprintf fmt "%a@\n%a@\n(check-sat)" pp_symbols syms pp_asserts es
end
let pp = Pp.pp
let pp_list = Pp.pp_list
let pp_smt = Pp.pp_smt
let to_string e = Format.asprintf "%a" pp e
let rec simplify_binop ty (op : binop) e1 e2 =
match (e1.e, e2.e) with
| Val (Num n1), Val (Num n2) -> Val (Num (Eval_numeric.eval_binop ty op n1 n2))
| Ptr (b1, os1), Ptr (b2, os2) -> (
match op with
| Sub when b1 = b2 -> simplify_binop ty Sub os1 os2
| _ -> Binop (op, e1, e2) )
| Ptr (base, offset), _ -> (
match op with
| Add ->
let new_offset = simplify_binop offset.ty Add offset e2 in
Ptr (base, { e = new_offset; ty = offset.ty })
| Sub ->
let new_offset = simplify_binop offset.ty Sub offset e2 in
Ptr (base, { e = new_offset; ty = offset.ty })
| _ -> Binop (op, e1, e2) )
| _, Ptr (base, offset) -> (
match op with
| Add ->
let new_offset = simplify_binop offset.ty Add offset e1 in
Ptr (base, { e = new_offset; ty = offset.ty })
| _ -> Binop (op, e1, e2) )
| Val (Num (I32 0l)), _ -> (
match op with
| Add | Or -> e2.e
| And | Div | DivU | Mul | Rem | RemU -> Val (Num (I32 0l))
| _ -> Binop (op, e1, e2) )
| _, Val (Num (I32 0l)) -> (
match op with
| Add | Or | Sub -> e1.e
| And | Mul -> Val (Num (I32 0l))
| _ -> Binop (op, e1, e2) )
| Binop (op2, x, { e = Val (Num v1); ty }), Val (Num v2) when not (is_num x)
-> (
match (op, op2) with
| Add, Add ->
let v = Eval_numeric.eval_binop ty Add v1 v2 in
Binop (Add, x, { e = Val (Num v); ty })
| Sub, Sub ->
let v = Eval_numeric.eval_binop ty Add v1 v2 in
Binop (Sub, x, { e = Val (Num v); ty })
| _, _ -> Binop (op, e1, e2) )
| Binop (And, _, _), Val (Num (I32 1l)) -> e1.e
| Val (Num (I32 1l)), Binop (And, _, _) -> e2.e
| _ -> Binop (op, e1, e2)
let simplify_relop ty (op : relop) e1 e2 =
match (e1.e, e2.e) with
| Val (Num v1), Val (Num v2) ->
Val (if Eval_numeric.eval_relop ty op v1 v2 then True else False)
| Ptr (_, _), Val (Num (I32 0l)) | Val (Num (I32 0l)), Ptr (_, _) -> (
match op with Eq -> Val False | Ne -> Val True | _ -> Relop (op, e1, e2) )
| Ptr (b1, os1), Ptr (b2, os2) -> (
let v i = { ty = Ty_bitv S32; e = Val (Num (I32 i)) } in
match op with
| Eq -> if b1 = b2 then Relop (Eq, os1, os2) else Val False
| Ne -> if b1 = b2 then Relop (Ne, os1, os2) else Val True
| (LtU | LeU | GtU | GeU) as op ->
if b1 = b2 then Relop (op, os1, os2) else Relop (op, v b1, v b2)
| _ -> Relop (op, e1, e2) )
| _ -> Relop (op, e1, e2)
let nland64 (x : int64) (n : int) =
let rec loop x' n' acc =
if n' = 0 then Int64.logand x' acc
else loop x' (n' - 1) Int64.(logor (shift_left acc 8) 0xffL)
in
loop x n 0L
let nland32 (x : int32) (n : int) =
let rec loop x' n' acc =
if n' = 0 then Int32.logand x' acc
else loop x' (n' - 1) Int32.(logor (shift_left acc 8) 0xffl)
in
loop x n 0l
let s h l =
match s.e with
| Val (Num (I64 x)) ->
let x' = nland64 (Int64.shift_right x (l * 8)) (h - l) in
Val (Num (I64 x'))
| _ -> if h - l = size s.ty then s.e else Extract (s, h, l)
let simplify_concat (msb : t) (lsb : t) =
match (msb.e, lsb.e) with
| ( Extract ({ e = Val (Num (I64 x2)); _ }, h2, l2)
, Extract ({ e = Val (Num (I64 x1)); _ }, h1, l1) ) ->
let d1 = h1 - l1 in
let d2 = h2 - l2 in
let x1' = nland64 (Int64.shift_right x1 (l1 * 8)) d1 in
let x2' = nland64 (Int64.shift_right x2 (l2 * 8)) d2 in
let x = Int64.(logor (shift_left x2' (d1 * 8)) x1') in
Extract ({ e = Val (Num (I64 x)); ty = msb.ty }, d1 + d2, 0)
| ( Extract ({ e = Val (Num (I32 x2)); _ }, h2, l2)
, Extract ({ e = Val (Num (I32 x1)); _ }, h1, l1) ) ->
let d1 = h1 - l1 in
let d2 = h2 - l2 in
let x1' = nland32 (Int32.shift_right x1 (l1 * 8)) d1 in
let x2' = nland32 (Int32.shift_right x2 (l2 * 8)) d2 in
let x = Int32.(logor (shift_left x2' (d1 * 8)) x1') in
Extract ({ e = Val (Num (I32 x)); ty = msb.ty }, d1 + d2, 0)
| Extract (s1, h, m1), Extract (s2, m2, l) when equal s1 s2 && m1 = m2 ->
Extract (s1, h, l)
| ( Extract ({ e = Val (Num (I64 x2)); ty }, h2, l2)
, Concat ({ e = Extract ({ e = Val (Num (I64 x1)); _ }, h1, l1); _ }, se) )
when not (is_num se) ->
let d1 = h1 - l1 in
let d2 = h2 - l2 in
let x1' = nland64 (Int64.shift_right x1 (l1 * 8)) d1 in
let x2' = nland64 (Int64.shift_right x2 (l2 * 8)) d2 in
let x = Int64.(logor (shift_left x2' (d1 * 8)) x1') in
Concat ({ e = Extract ({ e = Val (Num (I64 x)); ty }, d1 + d2, 0); ty }, se)
| _ -> Concat (msb, lsb)
let rec simplify ?( = true) ({ ty; e } as expr : t) : t =
match e with
| Val _ -> expr
| Ptr (base, offset) -> { ty; e = Ptr (base, simplify offset) }
| Binop (op, e1, e2) ->
let e1 = simplify e1 in
let e2 = simplify e2 in
{ ty; e = simplify_binop ty op e1 e2 }
| Relop (op, e1, e2) ->
let e1 = simplify e1 in
let e2 = simplify e2 in
{ ty; e = simplify_relop ty op e1 e2 }
| Extract (_, _, _) when not extract -> expr
| Extract (s, h, l) when extract -> { ty; e = simplify_extract s h l }
| Concat (e1, e2) ->
let msb = simplify ~extract:false e1 in
let lsb = simplify ~extract:false e2 in
{ ty; e = simplify_concat msb lsb }
| _ -> expr
module Infix = struct
let ( ++ ) e1 e2 = Concat (e1, e2)
end
module Bitv = struct
let ty_of_cast (type a) (c : a Ty.cast) : Ty.t =
match c with C8 -> Ty_bitv S8 | C32 -> Ty_bitv S32 | C64 -> Ty_bitv S64
let v (type a) (c : a Ty.cast) (i : a) =
match c with
| C8 -> Val (Num (I8 i)) @: Ty_bitv S8
| C32 -> Val (Num (I32 i)) @: Ty_bitv S32
| C64 -> Val (Num (I64 i)) @: Ty_bitv S64
let not (c : _ cast) (e : t) = Unop (Not, e) @: ty_of_cast c
end