package core_unix

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file interval.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
open! Core
open! Int.Replace_polymorphic_compare

module Stable = struct
  open Stable_witness.Export

  module V1 = struct
    module T = struct
      type 'a t =
        | Interval of 'a * 'a
        | Empty
      [@@deriving bin_io, of_sexp, variants, compare, hash, sexp_grammar, stable_witness]

      type 'a interval = 'a t
      [@@deriving bin_io, of_sexp, compare, hash, sexp_grammar, stable_witness]

      let interval_of_sexp a_of_sexp sexp =
        try interval_of_sexp a_of_sexp sexp (* for backwards compatibility *) with
        | _exn ->
          (match sexp with
           | Sexp.List [] -> Empty
           | Sexp.List [ lb; ub ] -> Interval (a_of_sexp lb, a_of_sexp ub)
           | Sexp.Atom _ | Sexp.List _ ->
             of_sexp_error "Interval.t_of_sexp: expected pair or empty list" sexp)
      ;;

      let sexp_of_interval sexp_of_a t =
        match t with
        | Empty -> Sexp.List []
        | Interval (lb, ub) -> Sexp.List [ sexp_of_a lb; sexp_of_a ub ]
      ;;

      let interval_sexp_grammar a_sexp_grammar =
        Sexplib0.Sexp_grammar.coerce
          { untyped =
              Union
                [ (interval_sexp_grammar a_sexp_grammar).untyped
                ; List Empty
                ; List
                    (Cons (a_sexp_grammar.untyped, Cons (a_sexp_grammar.untyped, Empty)))
                ]
          }
      ;;
    end

    open T

    type 'a t = 'a interval
    [@@deriving sexp, bin_io, compare, hash, sexp_grammar, stable_witness]

    module Float = struct
      module T = struct
        type t = float interval
        [@@deriving sexp, bin_io, compare, hash, sexp_grammar, stable_witness]
      end

      include T
      include Comparator.Stable.V1.Make (T)
    end

    module Int = struct
      module T = struct
        type t = int interval
        [@@deriving sexp, bin_io, compare, hash, sexp_grammar, stable_witness]
      end

      include T
      include Comparator.Stable.V1.Make (T)
    end

    module Time = struct end
    module Time_ns = struct end

    module Ofday = struct
      module T = struct
        type t = Core.Time_float.Stable.Ofday.V1.t interval
        [@@deriving sexp, bin_io, compare, hash, sexp_grammar, stable_witness]
      end

      include T
      include Comparator.Stable.V1.Make (T)
    end

    module Ofday_ns = struct
      module T = struct
        type t = Core.Time_ns.Stable.Ofday.V1.t interval
        [@@deriving sexp, bin_io, compare, sexp_grammar, stable_witness]
      end

      include T
      include Comparator.Stable.V1.Make (T)
    end

    module Private = struct
      include T

      let to_float t = t
      let to_int t = t
      let to_ofday t = t
      let to_time t = t
    end
  end
end

open Stable.V1.T

module type Bound = sig
  type 'a bound

  val compare : 'a bound -> 'a bound -> int
  val ( >= ) : 'a bound -> 'a bound -> bool
  val ( <= ) : 'a bound -> 'a bound -> bool
  val ( = ) : 'a bound -> 'a bound -> bool
  val ( > ) : 'a bound -> 'a bound -> bool
  val ( < ) : 'a bound -> 'a bound -> bool
  val ( <> ) : 'a bound -> 'a bound -> bool
end

module Raw_make (T : Bound) = struct
  module T = struct
    include T

    let _ = ( <> ) (* Prevent unused value warning for "<>" *)
    let max x y = if T.( >= ) x y then x else y
    let min x y = if T.( <= ) x y then x else y
  end

  module Interval = struct
    let empty = Empty

    let is_malformed = function
      | Empty -> false
      | Interval (x, y) -> T.( > ) x y
    ;;

    let empty_cvt = function
      | Empty -> Empty
      | Interval (x, y) as i -> if T.( > ) x y then Empty else i
    ;;

    let create x y =
      (* if x > y, then this is just the Empty interval. *)
      empty_cvt (Interval (x, y))
    ;;

    let intersect i1 i2 =
      match i1, i2 with
      | Empty, _ | _, Empty -> Empty
      | Interval (l1, u1), Interval (l2, u2) ->
        empty_cvt (Interval (T.max l1 l2, T.min u1 u2))
    ;;

    let is_empty = function
      | Empty -> true
      | _ -> false
    ;;

    let is_empty_or_singleton = function
      | Empty -> true
      | Interval (x, y) -> T.( = ) x y
    ;;

    let bounds = function
      | Empty -> None
      | Interval (l, u) -> Some (l, u)
    ;;

    let lbound = function
      | Empty -> None
      | Interval (l, _) -> Some l
    ;;

    let ubound = function
      | Empty -> None
      | Interval (_, u) -> Some u
    ;;

    let bounds_exn = function
      | Empty -> invalid_arg "Interval.bounds_exn: empty interval"
      | Interval (l, u) -> l, u
    ;;

    let lbound_exn = function
      | Empty -> invalid_arg "Interval.lbound_exn: empty interval"
      | Interval (l, _) -> l
    ;;

    let ubound_exn = function
      | Empty -> invalid_arg "Interval.ubound_exn: empty interval"
      | Interval (_, u) -> u
    ;;

    let compare_value i x =
      match i with
      | Empty -> `Interval_is_empty
      | Interval (l, u) ->
        if T.( < ) x l then `Below else if T.( > ) x u then `Above else `Within
    ;;

    let contains i x = Poly.( = ) (compare_value i x) `Within

    let bound i x =
      match i with
      | Empty -> None
      | Interval (l, u) ->
        let bounded_value = if T.( < ) x l then l else if T.( < ) u x then u else x in
        Some bounded_value
    ;;

    let is_superset i1 ~of_:i2 =
      match i1, i2 with
      | Interval (l1, u1), Interval (l2, u2) -> T.( <= ) l1 l2 && T.( >= ) u1 u2
      | _, Empty -> true
      | Empty, Interval (_, _) -> false
    ;;

    let is_subset i1 ~of_:i2 = is_superset i2 ~of_:i1

    let map t ~f =
      match t with
      | Empty -> Empty
      | Interval (l, u) -> empty_cvt (Interval (f l, f u))
    ;;

    let interval_compare t1 t2 =
      match t1, t2 with
      | Empty, Empty -> 0
      | Empty, Interval _ -> -1
      | Interval _, Empty -> 1
      | Interval (l1, u1), Interval (l2, u2) ->
        let c = T.compare l1 l2 in
        if Int.( <> ) c 0 then c else T.compare u1 u2
    ;;

    let are_disjoint_gen ~are_disjoint intervals =
      let intervals = Array.of_list intervals in
      try
        for i = 0 to Array.length intervals - 1 do
          for j = i + 1 to Array.length intervals - 1 do
            if not (are_disjoint intervals.(i) intervals.(j)) then raise Exit
          done
        done;
        true
      with
      | Exit -> false
    ;;

    let are_disjoint intervals =
      are_disjoint_gen intervals ~are_disjoint:(fun i1 i2 -> is_empty (intersect i1 i2))
    ;;

    let are_disjoint_as_open_intervals intervals =
      are_disjoint_gen intervals ~are_disjoint:(fun i1 i2 ->
        is_empty_or_singleton (intersect i1 i2))
    ;;

    let list_intersect ilist1 ilist2 =
      if (not (are_disjoint ilist1)) || not (are_disjoint ilist2)
      then invalid_arg "Interval.list_intersect: non-disjoint input list";
      let pairs = List.cartesian_product ilist1 ilist2 in
      List.filter_map pairs ~f:(fun (i1, i2) ->
        let i = intersect i1 i2 in
        if is_empty i then None else Some i)
    ;;

    let half_open_intervals_are_a_partition intervals =
      let intervals = List.filter ~f:(fun x -> not (is_empty x)) intervals in
      let intervals = List.sort ~compare:interval_compare intervals in
      (* requires sorted list of intervals *)
      let rec is_partition a = function
        | [] -> true
        | b :: tl -> T.( = ) (ubound_exn a) (lbound_exn b) && is_partition b tl
      in
      match intervals with
      | [] -> true
      | x :: xs -> is_partition x xs
    ;;

    let convex_hull intervals =
      List.fold intervals ~init:empty ~f:(fun i1 i2 ->
        (* Compute the convex hull of two intervals *)
        match bounds i1, bounds i2 with
        | None, _ -> i2
        | _, None -> i1
        | Some (l1, u1), Some (l2, u2) -> create (T.min l1 l2) (T.max u1 u2))
    ;;
  end

  module Set = struct
    (* The intervals are sorted by their lower bound *)
    let drop_empty_intervals_and_sort intervals =
      List.filter intervals ~f:(fun i -> not (Interval.is_empty i))
      |> List.sort ~compare:(Comparable.lift T.compare ~f:Interval.lbound_exn)
    ;;

    let create_from_intervals_exn intervals =
      let intervals = drop_empty_intervals_and_sort intervals in
      if not (Interval.are_disjoint intervals)
      then failwith "Interval_set.create: intervals were not disjoint"
      else intervals
    ;;

    let create_merging_intervals intervals =
      (* We only need to check for overlapping intervals that are adjacent in the sorted
         order.  That's because, if you have intervals [abc] that are sorted by their
         lower-bound, if a intersects with c, then b must intersect with c as well.

         As a result we can just iteratively merge together adjacent intervals that
         intersect, and that will capture all necessary merges.  *)
      drop_empty_intervals_and_sort intervals
      |> List.fold ~init:[] ~f:(fun acc interval ->
           match acc with
           | [] -> [ interval ]
           | prev_interval :: tl ->
             if Interval.are_disjoint [ prev_interval; interval ]
             then interval :: acc
             else Interval.convex_hull [ prev_interval; interval ] :: tl)
      |> List.rev
    ;;

    let create_exn pair_list =
      let intervals =
        List.map pair_list ~f:(fun (lbound, ubound) -> Interval.create lbound ubound)
      in
      create_from_intervals_exn intervals
    ;;

    let contains_set ~container ~contained =
      List.for_all contained ~f:(fun contained_interval ->
        List.exists container ~f:(fun container_interval ->
          Interval.is_superset container_interval ~of_:contained_interval))
    ;;

    let contains t x = List.exists t ~f:(fun interval -> Interval.contains interval x)

    let ubound_exn t =
      match t with
      | [] -> invalid_arg "Interval_set.ubound called on empty set"
      | _ -> Interval.ubound_exn (List.last_exn t)
    ;;

    let lbound_exn t =
      match t with
      | [] -> invalid_arg "Interval_set.lbound called on empty set"
      | _ -> Interval.lbound_exn (List.hd_exn t)
    ;;

    let ubound t =
      match List.last t with
      | None -> None
      | Some i ->
        (match Interval.ubound i with
         | None -> assert false
         | Some x -> Some x)
    ;;

    let lbound t =
      match List.hd t with
      | None -> None
      | Some i ->
        (match Interval.lbound i with
         | None -> assert false
         | Some x -> Some x)
    ;;

    let union_list ts = List.concat_no_order ts |> create_merging_intervals
    let union t1 t2 = union_list [ t1; t2 ]
    let inter t1 t2 = Interval.list_intersect t1 t2 |> create_from_intervals_exn
  end
end

type 'a t = 'a interval [@@deriving bin_io, sexp, compare, hash]

module C = Raw_make (struct
  type 'a bound = 'a

  include Poly
end)

include C.Interval

let t_of_sexp a_of_sexp s =
  let t = t_of_sexp a_of_sexp s in
  if is_malformed t then of_sexp_error "Interval.t_of_sexp error: malformed input" s;
  t
;;

module Set = struct
  type 'a t = 'a interval list [@@deriving bin_io, sexp, compare, hash]

  include C.Set
end

module Make (Bound : sig
  type t [@@deriving bin_io, sexp, hash]

  include Comparable.S with type t := t
end) =
struct
  type t = Bound.t interval [@@deriving bin_io, sexp, compare, hash]
  type interval = t [@@deriving bin_io, sexp]
  type bound = Bound.t

  module C = Raw_make (struct
    type 'a bound = Bound.t

    let compare = Bound.compare

    include (Bound : Comparable.Infix with type t := Bound.t)
  end)

  include C.Interval

  let to_poly (t : t) = t

  let t_of_sexp s =
    let t = t_of_sexp s in
    if is_malformed t
    then
      failwithf "Interval.Make.t_of_sexp error: malformed input %s" (Sexp.to_string s) ()
    else t
  ;;

  module Set = struct
    type t = interval list [@@deriving sexp, bin_io]

    include C.Set

    let to_poly (t : t) = t
    let to_list (t : t) : interval list = t
  end
end

module type S1 = Interval_intf.S1

module type S =
  Interval_intf.S with type 'a poly_t := 'a t with type 'a poly_set := 'a Set.t

module type S_time = sig end

module Float = Make (Float)
module Ofday = Make (Core.Time_float.Ofday)
module Ofday_ns = Make (Core.Time_ns.Ofday)

module Int = struct
  include Make (Int)

  let length t =
    match t with
    | Empty -> 0
    | Interval (lo, hi) ->
      let len = 1 + hi - lo in
      (* If [hi] and [lo] are far enough apart (e.g. if [lo <= 0] and
         [hi = Int.max_value]), [len] will overlow. *)
      if len < 0
      then failwiths ~here:[%here] "interval length not representable" t [%sexp_of: t];
      len
  ;;

  let get t i =
    let fail () =
      failwiths ~here:[%here] "index out of bounds" (i, t) [%sexp_of: int * t]
    in
    match t with
    | Empty -> fail ()
    | Interval (lo, hi) ->
      if i < 0 then fail ();
      let x = lo + i in
      if x < lo || x > hi then fail ();
      x
  ;;

  let iter t ~f =
    match t with
    | Empty -> ()
    | Interval (lo, hi) ->
      for x = lo to hi do
        f x
      done
  ;;

  let fold =
    let rec fold_interval ~lo ~hi ~acc ~f =
      if lo = hi then f acc hi else fold_interval ~lo:(lo + 1) ~hi ~acc:(f acc lo) ~f
    in
    fun t ~init ~f ->
      match t with
      | Empty -> init
      | Interval (lo, hi) -> fold_interval ~lo ~hi ~acc:init ~f
  ;;

  module For_container = Container.Make0 (struct
    type nonrec t = t

    module Elt = Int

    let iter = `Custom iter
    let fold = fold
    let length = `Custom length
  end)

  let exists = For_container.exists
  let for_all = For_container.for_all
  let sum = For_container.sum
  let count = For_container.count
  let find = For_container.find
  let find_map = For_container.find_map
  let to_list = For_container.to_list
  let to_array = For_container.to_array
  let fold_result = For_container.fold_result
  let fold_until = For_container.fold_until

  let min_elt t ~(compare : _ -> _ -> _) =
    if not (phys_equal compare Int.compare)
    then For_container.min_elt t ~compare
    else lbound t
  ;;

  let max_elt t ~(compare : _ -> _ -> _) =
    if not (phys_equal compare Int.compare)
    then For_container.max_elt t ~compare
    else ubound t
  ;;

  let mem t x =
    if not (phys_equal equal Int.equal) then For_container.mem t x else contains t x
  ;;

  (* Note that we use zero-based indexing here, because that's what Binary_searchable
     requires, even though at the end we want to export functions that use the natural
     bounds of the interval.  *)
  module For_binary_search = Binary_searchable.Make (struct
    type nonrec t = t
    type nonrec elt = bound

    let length = length
    let get = get
  end)

  let binary_search ?pos ?len t ~compare which elt =
    let zero_based_pos = Option.map pos ~f:(fun x -> x - lbound_exn t) in
    let zero_based_result =
      For_binary_search.binary_search ?pos:zero_based_pos ?len t ~compare which elt
    in
    Option.map zero_based_result ~f:(fun x -> x + lbound_exn t)
  ;;

  let binary_search_segmented ?pos ?len t ~segment_of which =
    let zero_based_pos = Option.map pos ~f:(fun x -> x - lbound_exn t) in
    let zero_based_result =
      For_binary_search.binary_search_segmented
        ?pos:zero_based_pos
        ?len
        t
        ~segment_of
        which
    in
    Option.map zero_based_result ~f:(fun x -> x + lbound_exn t)
  ;;

  module Private = struct
    let get = get
  end
end

module Private = struct
  module Make = Make
end

module Time = struct end
module Time_ns = struct end
OCaml

Innovation. Community. Security.