package core_kernel
Industrial strength alternative to OCaml's standard library
Install
Dune Dependency
Authors
Maintainers
Sources
core_kernel-v0.15.0.tar.gz
sha256=34a0288f16027c6b90e4ad16cb5cc677d7063d310faf918748ce70f1745116c0
doc/src/core_kernel.flags/flags_intf.ml.html
Source file flags_intf.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
(** [module Flags] implements Unix-style sets of flags that are represented as an [int] with various bits set, one bit for each flag. E.g. [Linux_ext.Epoll.Flag]. [Flags] defines a module type [Flags.S], the interface for a flags, and a functor [Flags.Make] for creating a flags implementation. *) open! Core (** [module type S] is the interface for a set of flags. Values of [type t] are set of flags, and the various functions operate on sets of flags. There is a finite universe of flags (in particular 63 flags, one for each bit). [sexp_of_t] and [t_of_sexp] use the flag names supplied to [Flags.Make]. *) module type S = sig type t [@@deriving sexp, typerep] (** consistent with subset *) include Comparable.S with type t := t val of_int : int -> t val to_int_exn : t -> int val empty : t (** set union, bitwise or *) val ( + ) : t -> t -> t (** set difference. Although we use operators [+] and [-], they do not satisfy the usual arithmetic equations, e.g. [x - y = x + (empty - y)] does not hold. *) val ( - ) : t -> t -> t (** bitwise and *) val intersect : t -> t -> t (** bitwise not *) val complement : t -> t val is_empty : t -> bool val do_intersect : t -> t -> bool val are_disjoint : t -> t -> bool (** [is_subset t ~of_] is [t = intersect t of_] *) val is_subset : t -> of_:t -> bool module Unstable : sig type nonrec t = t [@@deriving bin_io, compare, sexp] end end module type Make_arg = sig (** An entry [flag, name] in [known] means that the bit(s) in [flag] is (are) called [name]; i.e. if [bit_and flags flag = flag], then the bit(s) is (are) set and [name] will appear in [sexp_of_t flags]. [known] is only used to make [sexp_of_t]'s output human readable. The flags in the output of [sexp_of_t] will occur in the same order as they appear in [known]. It is allowed to have a single flag with multiple bits set. It is an error if different flags intersect, and [allow_intersecting = false]. *) val known : (Int63.t * string) list (** If [remove_zero_flags], then all flags with value zero will be automatically removed from [known]. If [not remove_zero_flags], then it is an error for [known] to contain any flags with value zero. About this existence of this option: it seems better to make it an option here rather than do the filtering at the functor call site. It also makes clear to callers that they need to think about zero flags, and clear what they can do if they encounter them. *) val remove_zero_flags : bool (** [allow_intersecting] says whether to allow intersecting [known] flags. It is common to do [allow_intersecting = false], however in some situations, e.g. Unix open flags, the flags intersect. *) val allow_intersecting : bool (** [should_print_error] says whether to print an error message if there is an error in the known flags. It is typical to use [should_print_error = true] because [Flags.Make] is applied at the module level, where the exception raised isn't displayed nicely. *) val should_print_error : bool end module type Flags = sig module type Make_arg = Make_arg module type S = S (** [create ~bit:n] creates a flag with the [n]th bit set. [n] must be between 0 and 62. Typically a flag has one bit set; [create] is useful in exactly those cases. For flags with multiple bits one can either define the Int63.t directly or create it in terms of simpler flags, using [+] and [-]. *) val create : bit:int -> Int63.t (** [Flags.Make] builds a new flags module. If there is an error in the [known] flags, it behaves as per [on_error]. We expose [type t = int] in the result of [Flags.Make] so that one can easily use flag constants as values of the flag type without having to coerce them. It is typical to hide the [t = int] in another signature [S]. *) module Make (M : Make_arg) : S with type t = Int63.t end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>