package coq

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

Errors related to recursors building

type recursion_scheme_error =
  1. | NotAllowedCaseAnalysis of bool * Sorts.t * Constr.pinductive
  2. | NotMutualInScheme of Names.inductive * Names.inductive
  3. | NotAllowedDependentAnalysis of bool * Names.inductive
exception RecursionSchemeError of Environ.env * recursion_scheme_error

Eliminations

type dep_flag = bool

Build a case analysis elimination scheme in some sort family

val build_case_analysis_scheme : Environ.env -> Evd.evar_map -> Constr.pinductive -> dep_flag -> Sorts.family -> Evd.evar_map * Constr.t

Build a dependent case elimination predicate unless type is in Prop or is a recursive record with primitive projections.

val build_case_analysis_scheme_default : Environ.env -> Evd.evar_map -> Constr.pinductive -> Sorts.family -> Evd.evar_map * Constr.t

Builds a recursive induction scheme (Peano-induction style) in the same sort family as the inductive family; it is dependent if not in Prop or a recursive record with primitive projections.

Builds mutual (recursive) induction schemes

val build_mutual_induction_scheme : Environ.env -> Evd.evar_map -> ?force_mutual:bool -> (Constr.pinductive * dep_flag * Sorts.family) list -> Evd.evar_map * Constr.constr list

Scheme combinators

weaken_sort_scheme env sigma eq s n c t derives by subtyping from c:t whose conclusion is quantified on Type i at position n of t a scheme quantified on sort s. set asks for s be declared equal to i, otherwise just less or equal to i.

val weaken_sort_scheme : Environ.env -> Evd.evar_map -> bool -> Sorts.t -> int -> Constr.constr -> Constr.types -> Evd.evar_map * Constr.types * Constr.constr

Recursor names utilities

val lookup_eliminator : Environ.env -> Names.inductive -> Sorts.family -> Names.GlobRef.t
val elimination_suffix : Sorts.family -> string
val make_elimination_ident : Names.Id.t -> Sorts.family -> Names.Id.t
val case_suffix : string
OCaml

Innovation. Community. Security.