Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
bls12_381.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
(*****************************************************************************) (* *) (* Copyright (c) 2020-2021 Danny Willems <be.danny.willems@gmail.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) module Ff_sig = Ff_sig module type CURVE = sig exception Not_on_curve of Bytes.t (** The type of the element on the curve and in the prime subgroup. The point is given in jacobian coordinates *) type t (** An element on the curve and in the prime subgroup, in affine coordinates *) type affine (** [affine_of_jacobian p] creates a new value of type [affine] representing the point [p] in affine coordinates *) val affine_of_jacobian : t -> affine (** [jacobian_of_affine p] creates a new value of type [t] representing the point [p] in jacobian coordinates *) val jacobian_of_affine : affine -> t (** Contiguous C array containing points in affine coordinates *) type affine_array (** [to_affine_array pts] builds a contiguous C array and populate it with the points [pts] in affine coordinates. Use it with {!pippenger_with_affine_array} to get better performance. *) val to_affine_array : t array -> affine_array (** Build a OCaml array of [t] values from the contiguous C array *) val of_affine_array : affine_array -> t array (** Return the number of elements in the array *) val size_of_affine_array : affine_array -> int (** Actual number of bytes allocated for a value of type t *) val size_in_memory : int (** Size in bytes for the compressed representation *) val compressed_size_in_bytes : int (** The size of a point representation, in bytes *) val size_in_bytes : int module Scalar : Ff_sig.PRIME with type t = Fr.t (** Check if a point, represented as a byte array, is on the curve **) val check_bytes : Bytes.t -> bool (** Attempt to construct a point from a byte array of length {!size_in_bytes}. *) val of_bytes_opt : Bytes.t -> t option (** Attempt to construct a point from a byte array of length {!size_in_bytes}. Raise {!Not_on_curve} if the point is not on the curve *) val of_bytes_exn : Bytes.t -> t (** Allocates a new point from a byte of length [size_in_bytes / 2] array representing a point in compressed form. *) val of_compressed_bytes_opt : Bytes.t -> t option (** Allocates a new point from a byte array of length [size_in_bytes / 2] representing a point in compressed form. Raise {!Not_on_curve} if the point is not on the curve. *) val of_compressed_bytes_exn : Bytes.t -> t (** Return a representation in bytes *) val to_bytes : t -> Bytes.t (** Return a compressed bytes representation *) val to_compressed_bytes : t -> Bytes.t (** Zero of the elliptic curve *) val zero : t (** A fixed generator of the elliptic curve *) val one : t (** Return [true] if the given element is zero *) val is_zero : t -> bool (** [copy x] return a fresh copy of [x] *) val copy : t -> t (** Generate a random element. The element is on the curve and in the prime subgroup. *) val random : ?state:Random.State.t -> unit -> t (** Return the addition of two element *) val add : t -> t -> t val add_inplace : t -> t -> unit val add_bulk : t list -> t (** [double g] returns [2g] *) val double : t -> t (** Return the opposite of the element *) val negate : t -> t (** Return [true] if the two elements are algebraically the same *) val eq : t -> t -> bool (** Multiply an element by a scalar *) val mul : t -> Scalar.t -> t val mul_inplace : t -> Scalar.t -> unit val hash_to_curve : Bytes.t -> Bytes.t -> t (** [pippenger ?start ?len pts scalars] computes the multi scalar exponentiation/multiplication. The scalars are given in [scalars] and the points in [pts]. If [pts] and [scalars] are not of the same length, perform the computation on the first [n] points where [n] is the smallest size. Arguments [start] and [len] can be used to take advantages of multicore OCaml. Default value for [start] (resp. [len]) is [0] (resp. the length of the array [scalars]). @raise Invalid_argument if [start] or [len] would infer out of bounds array access. Perform allocations on the C heap to convert scalars to bytes and to convert the points [pts] in affine coordinates as values of type [t] are in jacobian coordinates. {b Warning.} Undefined behavior if the point to infinity is in the array *) val pippenger : ?start:int -> ?len:int -> t array -> Scalar.t array -> t (** [pippenger_with_affine_array ?start ?len pts scalars] computes the multi scalar exponentiation/multiplication. The scalars are given in [scalars] and the points in [pts]. If [pts] and [scalars] are not of the same length, perform the computation on the first [n] points where [n] is the smallest size. The differences with {!pippenger} are 1. the points are loaded in a contiguous C array to speed up the access to the elements by relying on the CPU cache 2. and the points are in affine coordinates, the form expected by the algorithm implementation, avoiding new allocations and field inversions required to convert from jacobian (representation of a points of type [t], as expected by {!pippenger}) to affine coordinates. Expect a speed improvement around 20% compared to {!pippenger}, and less allocation on the C heap. A value of [affine_array] can be built using {!to_affine_array}. Arguments [start] and [len] can be used to take advantages of multicore OCaml. Default value for [start] (resp. [len]) is [0] (resp. the length of the array [scalars]). @raise Invalid_argument if [start] or [len] would infer out of bounds array access. Perform allocations on the C heap to convert scalars to bytes. {b Warning.} Undefined behavior if the point to infinity is in the array *) val pippenger_with_affine_array : ?start:int -> ?len:int -> affine_array -> Scalar.t array -> t end module Fr = Fr module G1 = G1 module G2 = G2 module GT = Gt module Fq12 = Fq12 module Pairing = Pairing external built_with_blst_portable_stubs : unit -> bool = "caml_built_with_blst_portable_stubs" let built_with_blst_portable = built_with_blst_portable_stubs ()