Library
Module
Module type
Parameter
Class
Class type
Bitwuzla is an SMT solver for the theories of fixed-size bit-vectors, floating-point arithmetic, arrays and uninterpreted functions and their combinations.
You will want to create some expressions and assert formulas. For example, consider the following SMT-LIB input:
(set-logic QF_BV) (set-option :produce-models true) (declare-const x (_ BitVec 8)) (declare-const y (_ BitVec 8)) (assert (distinct ((_ extract 3 0) (bvsdiv x (_ bv2 8))) ((_ extract 3 0) (bvashr y (_ bv1 8))))) (check-sat) (get-model) (exit)
This input is created and asserted as follows:
(* First, create a Bitwuzla instance. *)
let open Bitwuzla.Once () in
(* Create a bit-vector sort of size 8. *)
let bv8 = Sort.bv 8 in
(* Create two bit-vector variables of that sort. *)
let x = Term.const bv8 "x" and y = Term.const bv8 "y" in
(* Create bit-vector values one and two of the same sort. *)
let one = Term.Bv.one bv8 and two = Term.Bv.of_int bv8 2 in
(* (bvsdiv x (_ bv2 8)) *)
let sdiv = Term.Bv.sdiv x two in
(* (bvashr y (_ bv1 8)) *)
let ashr = Term.Bv.shift_right y one in
(* ((_ extract 3 0) (bvsdiv x (_ bv2 8))) *)
let sdive = Term.Bv.extract ~hi:3 ~lo:0 sdiv in
(* ((_ extract 3 0) (bvashr x (_ sortbv1 8))) *)
let ashre = Term.Bv.extract ~hi:3 ~lo:0 ashr in
(*
(assert
(distinct
((_ extract 3 0) (bvsdiv x (_ sortbv2 8)))
((_ extract 3 0) (bvashr y (_ sortbv1 8)))))
*)
assert' @@ Term.distinct sdive ashre;
After asserting formulas, satisfiability can be determined via check_sat
.
(* (check-sat) *)
let result = check_sat () in
If the formula is satifiable, it is possible to query the value of expressions via get_value
as well as its concrete value via assignment
.
assert (result = Sat);
let xval = get_value x and yval = get_value y in
Format.printf "assignment of x: %s@\n"
@@ Z.format "%08b" @@ Term.Bv.assignment xval;
Format.printf "assignment of y: %s@\n"
@@ Z.format "%08b" @@ Term.Bv.assignment yval;
It is also possible to query the model value of expressions that do not occur in the input formula.
let x2 = Term.Bv.mul x x in
let x2val = get_value x2 in
Format.printf "assignment of x * x: %s@\n"
@@ Z.format "%08b" @@ Term.Bv.assignment x2val;
We can then let the garbage collector delete the Bitwuzla instance, but if we want to release the resources earlier, it is possible to call the funcion unsafe_close()
as the last action of the session.
unsafe_close ()
All examples can be found in directory examples. Assuming Bitwuzla was built from sources, run the following command to build and run an example:
dune exec -- examples/quickstart.exe # replace quickstart by other examples
The example used in the Quickstart guide.
The SMT-LIB input for this example can be found at examples/quickstart.smt2. The source code for this example can be found at examples/quickstart.ml.
let () =
(* First, create a Bitwuzla instance. *)
let open Bitwuzla.Once () in
(* Create a bit-vector sort of size 8. *)
let bv8 = Sort.bv 8 in
(* Create two bit-vector variables of that sort. *)
let x = Term.const bv8 "x" and y = Term.const bv8 "y" in
(* Create bit-vector values one and two of the same sort. *)
let one = Term.Bv.one bv8 and two = Term.Bv.of_int bv8 2 in
(* (bvsdiv x (_ bv2 8)) *)
let sdiv = Term.Bv.sdiv x two in
(* (bvashr y (_ bv1 8)) *)
let ashr = Term.Bv.shift_right y one in
(* ((_ extract 3 0) (bvsdiv x (_ bv2 8))) *)
let sdive = Term.Bv.extract ~hi:3 ~lo:0 sdiv in
(* ((_ extract 3 0) (bvashr x (_ sortbv1 8))) *)
let ashre = Term.Bv.extract ~hi:3 ~lo:0 ashr in
(*
(assert
(distinct
((_ extract 3 0) (bvsdiv x (_ sortbv2 8)))
((_ extract 3 0) (bvashr y (_ sortbv1 8)))))
*)
assert' @@ Term.distinct sdive ashre;
(* (check-sat) *)
let result = check_sat () in
assert (result = Sat);
(* (get-model) *)
let xval = get_value x and yval = get_value y in
Format.printf "assignment of x: %s@\n" @@ Z.format "%08b"
@@ Term.Bv.assignment xval;
Format.printf "assignment of y: %s@\n" @@ Z.format "%08b"
@@ Term.Bv.assignment yval;
let x2 = Term.Bv.mul x x in
let x2val = get_value x2 in
Format.printf "assignment of x * x: %s@\n" @@ Z.format "%08b"
@@ Term.Bv.assignment x2val;
(* Finally, delete the Bitwuzla instance. *)
unsafe_close ()
An incremental example with push
and pop
.
The SMT-LIB input for this example can be found at examples/pushpop.smt2. The source code for this example can be found at examples/pushpop.ml.
let () =
(* First, create a Bitwuzla instance enabling incremental solving. *)
let open Bitwuzla.Incremental () in
(* Create a bit-vector sort of size 1 and another of size 2. *)
let bv1 = Sort.bv 1 and bv2 = Sort.bv 2 in
(* (declare-const o0 (_ BitVec 1)) *)
let o0 = Term.const bv1 "o0"
(* (declare-const o1 (_ BitVec 1)) *)
and o1 = Term.const bv1 "o1"
(* (declare-const s0 (_ BitVec 2)) *)
and s0 = Term.const bv2 "s0"
(* (declare-const s1 (_ BitVec 2)) *)
and s1 = Term.const bv2 "s1"
(* (declare-const s2 (_ BitVec 2)) *)
and s2 = Term.const bv2 "s2"
(* (declare-const goal (_ BitVec 2)) *)
and goal = Term.const bv2 "goal"
(* Create bit-vector values zero, one, three. *)
and zero = Term.Bv.zero bv2
and one2 = Term.Bv.one bv2
and three = Term.Bv.of_int bv2 3 in
(* Add some assertions. *)
assert' @@ Term.equal s0 zero;
assert' @@ Term.equal goal three;
(* Push, assert, check sat and pop. *)
push 1;
assert' @@ Term.equal s0 goal;
Format.printf "Expect: unsat@\n";
Format.printf "Bitwuzla: %a@\n" pp_result @@ check_sat ();
pop 1;
(* (assert (= s1 (ite (= o0 (_ sortbv1 1)) (bvadd s0 one) s0))) *)
assert' @@ Term.equal s1 (Term.ite o0 (Term.Bv.add s0 one2) s0);
(* Push, assert, check sat and pop. *)
push 1;
assert' @@ Term.equal s1 goal;
Format.printf "Expect: unsat@\n";
Format.printf "Bitwuzla: %a@\n" pp_result @@ check_sat ();
pop 1;
(* (assert (= s2 (ite (= o1 (_ sortbv1 1)) (bvadd s1 one) s1))) *)
assert' @@ Term.equal s2 (Term.ite o1 (Term.Bv.add s1 one2) s1);
(* Push, assert, check sat and pop. *)
push 1;
assert' @@ Term.equal s1 goal;
Format.printf "Expect: unsat@\n";
Format.printf "Bitwuzla: %a@\n" pp_result @@ check_sat ();
pop 1;
(* Finally, delete the Bitwuzla instance. *)
unsafe_close ()
This example shows how to implement the example above with check-sat-assuming
instead of push
and pop
.
The SMT-LIB input for this example can be found at examples/checksatassuming.smt2. The source code for this example can be found at examples/checksatassuming.ml.
let () =
(* First, create a Bitwuzla instance enabling incremental solving. *)
let open Bitwuzla.Incremental () in
(* Create a bit-vector sort of size 1 and another of size 2. *)
let bv1 = Sort.bv 1 and bv2 = Sort.bv 2 in
(* (declare-const o0 (_ BitVec 1)) *)
let o0 = Term.const bv1 "o0"
(* (declare-const o1 (_ BitVec 1)) *)
and o1 = Term.const bv1 "o1"
(* (declare-const s0 (_ BitVec 2)) *)
and s0 = Term.const bv2 "s0"
(* (declare-const s1 (_ BitVec 2)) *)
and s1 = Term.const bv2 "s1"
(* (declare-const s2 (_ BitVec 2)) *)
and s2 = Term.const bv2 "s2"
(* (declare-const goal (_ BitVec 2)) *)
and goal = Term.const bv2 "goal"
(* Create bit-vector values zero, one, three. *)
and zero = Term.Bv.zero bv2
and one2 = Term.Bv.one bv2
and three = Term.Bv.of_int bv2 3 in
(* Add some assertions. *)
assert' @@ Term.equal s0 zero;
assert' @@ Term.equal goal three;
(* (check-sat-assuming ((= s0 goal))) *)
Format.printf "Expect: unsat@\n";
Format.printf "Bitwuzla: %a@\n" pp_result
@@ check_sat_assuming [| Term.equal s0 goal |];
(* (assert (= s1 (ite (= o0 (_ sortbv1 1)) (bvadd s0 one) s0))) *)
assert' @@ Term.equal s1 (Term.ite o0 (Term.Bv.add s0 one2) s0);
(* (check-sat-assuming ((= s1 goal))) *)
Format.printf "Expect: unsat@\n";
Format.printf "Bitwuzla: %a@\n" pp_result
@@ check_sat_assuming [| Term.equal s1 goal |];
(* (assert (= s2 (ite (= o1 (_ sortbv1 1)) (bvadd s1 one) s1))) *)
assert' @@ Term.equal s2 (Term.ite o1 (Term.Bv.add s1 one2) s1);
(* (check-sat-assuming ((= s2 goal))) *)
Format.printf "Expect: unsat@\n";
Format.printf "Bitwuzla: %a@\n" pp_result
@@ check_sat_assuming [| Term.equal s2 goal |];
(* Finally, delete the Bitwuzla instance. *)
unsafe_close ()
This example shows how to extract an unsat core. It creates bit-vector and floating-point terms and further illustrates how to create lambda terms (define-fun
).
The SMT-LIB input for this example can be found at examples/unsatcore.smt2. The source code for this example can be found at examples/unsatcore.ml.
let () =
(* First, create a Bitwuzla instance enabling unsat core extraction. *)
let open Bitwuzla.Unsat_core () in
(* Create a bit-vector sort of size 2 and another of size 4. *)
let bv2 = Sort.bv 2 and bv4 = Sort.bv 4
(* Create Float16 floatinf-point sort. *)
and fp16 = Sort.fp ~exponent:5 16 in
(* Create bit-vector variables. *)
(* (declare-const x0 (_ BitVec 4)) *)
let x0 = Term.const bv4 "x0"
(* (declare-const x1 (_ BitVec 2)) *)
and x1 = Term.const bv2 "x1"
(* (declare-const x2 (_ BitVec 2)) *)
and x2 = Term.const bv2 "x2"
(* (declare-const x3 (_ BitVec 2)) *)
and x3 = Term.const bv2 "x3"
(* (declare-const x4 Float16) *)
and x4 = Term.const fp16 "x4" in
(* Create FP positive zero. *)
let fpzero = Term.Fp.pos_zero fp16
(* Create BV zero of size 4. *)
and bvzero = Term.Bv.zero bv4 in
(* (define-fun f0 ((a Float16)) Bool (fp.gt a (_ +zero 5 11))) *)
let f0 = Term.Uf.lambda [ fp16 ] (fun [ a ] -> Term.Fp.gt a fpzero) in
(* (define-fun f1 ((a Float16)) (_ BitVec 4) (ite (f0 a) x0 #b0000)) *)
let f1 = Term.Uf.lambda [ fp16 ] (fun [ a ] ->
Term.ite (Term.Uf.apply f0 [ a ]) x0 bvzero) in
(* (define-fun f2 ((a Float16)) (_ BitVec 2) ((_ extract 1 0) (f1 a))) *)
let f2 = Term.Uf.lambda [ fp16 ] (fun [ a ] ->
Term.Bv.extract ~hi:1 ~lo:0 (Term.Uf.apply f1 [ a ])) in
(* (assert (! (bvult x2 (f2 (_ +zero 5 11))) :named assertion0)) *)
assert' ~name:"assertion0"
@@ Term.Bv.ult x2 (Term.Uf.apply f2 [ fpzero ]);
(* (assert (! (= x1 x2 x3) :named assertion1)) *)
assert' ~name:"assertion1"
@@ Term.Bl.logand (Term.equal x1 x2) (Term.equal x2 x3);
(* (assert (!(= x4 ((_ to_fp_unsigned 5 11) RNE x3)) :named assertion2)) *)
assert' ~name:"assertion2"
@@ Term.equal x4 (Term.Fp.of_sbv ~exponent:5 16 Term.Rm.rne x3);
(* (check-sat) *)
Format.printf "Expect: unsat@\n";
Format.printf "Bitwuzla: %a@\n" pp_result @@ check_sat ();
(* (get-unsat-core) *)
Format.printf "Unsat core: {";
Array.iter (fun a -> Format.printf " %a" Term.pp a) @@ get_unsat_core ();
Format.printf " }@\n";
(* Finally, delete the Bitwuzla instance. *)
unsafe_close ()
This example shows how to implement the example above with get-unsat-assumptions
.
The SMT-LIB input for this example can be found at examples/unsatassumption.smt2. The source code for this example can be found at examples/unsatassumption.ml.
let () =
(* First, create a Bitwuzla instance enabling unsat core extraction. *)
let open Bitwuzla.Incremental () in
(* Create a bit-vector sort of size 2 and another of size 4. *)
let bv2 = Sort.bv 2 and bv4 = Sort.bv 4
(* Create Float16 floatinf-point sort. *)
and fp16 = Sort.fp ~exponent:5 16 in
(* Create bit-vector variables. *)
(* (declare-const x0 (_ BitVec 4)) *)
let x0 = Term.const bv4 "x0"
(* (declare-const x1 (_ BitVec 2)) *)
and x1 = Term.const bv2 "x1"
(* (declare-const x2 (_ BitVec 2)) *)
and x2 = Term.const bv2 "x2"
(* (declare-const x3 (_ BitVec 2)) *)
and x3 = Term.const bv2 "x3"
(* (declare-const x4 Float16) *)
and x4 = Term.const fp16 "x4" in
(* Create FP positive zero. *)
let fpzero = Term.Fp.pos_zero fp16
(* Create BV zero of size 4. *)
and bvzero = Term.Bv.zero bv4 in
(* (define-fun f0 ((a Float16)) Bool (fp.gt a (_ +zero 5 11))) *)
let f0 = Term.Uf.lambda [ fp16 ] (fun [ a ] -> Term.Fp.gt a fpzero) in
(* (define-fun f1 ((a Float16)) (_ BitVec 4) (ite (f0 a) x0 #b0000)) *)
let f1 = Term.Uf.lambda [ fp16 ] (fun [ a ] ->
Term.ite (Term.Uf.apply f0 [ a ]) x0 bvzero) in
(* (define-fun f2 ((a Float16)) (_ BitVec 2) ((_ extract 1 0) (f1 a))) *)
let f2 = Term.Uf.lambda [ fp16 ] (fun [ a ] ->
Term.Bv.extract ~hi:1 ~lo:0 (Term.Uf.apply f1 [ a ])) in
(* (define-fun assumption0 () Bool (bvult x2 (f2 (_ +zero 5 11)))) *)
let assumption0 = Term.Bv.ult x2 (Term.Uf.apply f2 [ fpzero ]) in
(* (define-fun assumption1 () Bool (= x1 x2 x3)) *)
let assumption1 = Term.Bl.logand (Term.equal x1 x2) (Term.equal x2 x3) in
(* (define-fun assumption2 () Bool (= x4 ((_ to_fp_unsigned 5 11) RNE x3))) *)
let assumption2 =
Term.equal x4 (Term.Fp.of_sbv ~exponent:5 16 Term.Rm.rne x3) in
(* (check-sat) *)
Format.printf "Expect: unsat@\n";
Format.printf "Bitwuzla: %a@\n" pp_result
@@ check_sat_assuming
~names:[| "assumption0"; "assumption1"; "assumption2" |]
[| assumption0; assumption1; assumption2 |];
(* (get-unsat-core) *)
Format.printf "Unsat core: {";
Array.iter (fun a -> Format.printf " %a" Term.pp a)
@@ get_unsat_assumptions ();
Format.printf " }@\n";
(* Finally, delete the Bitwuzla instance. *)
unsafe_close ()
The Bitwuzla
library proposes the following sessions:
Bitwuzla.Once
(for one time check and model query);Bitwuzla.Incremental
(for incremental solving);Bitwuzla.Unsat_core
(for unsatifiable core generation).