package bitvec

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type
type t

abstract representation of a fixed size bitvector

type 'a m

a computation in some modulo

type modulus

type denoting the arithmetic modulus

val modulus : int -> modulus

modulus s is the modulus of bitvectors with size s.

This is a number $2^s-1$, also known as a Mersenne number.

val m1 : modulus

m1 = modulus 1 = $1$ is the modulus of bitvectors with size 1

val m8 : modulus

m8 = modulus 8 = $255$ is the modulus of bitvectors with size 8

val m32 : modulus

m32 = modulus 32 = $2^32-1$ is the modulus of bitvectors with size 32

val m64 : modulus

m64 = modulus 64 = $2^64-1$ is the modulus of bitvectors with size 64

val (mod) : 'a m -> modulus -> 'a

(x <op> y) mod m applies operation <op> modulo m.

Example: (x + y) mod m returns the sum of x and y modulo m.

Note: the mod function is declared as a primitive to enable support for inlining in non flambda versions of OCaml. Indeed, underneath the hood the 'a m type is defined as the reader monad modulus -> 'a, however we don't want to create a closure every time we compute an operation over bitvectors. With this trick, all versions of OCaml no matter the optimization options will inline (x+y) mod m and won't create any closures, even if m is not known at compile time.

module type S = sig ... end
val compare : t -> t -> int

compare x y compares x and y as unsigned integers, i.e., compare x y = compare (to_nat x) (to_nat y)

val equal : t -> t -> bool

equal x y is true if x and y represent the same integers

val (<) : t -> t -> bool

x < y iff compare x y = -1

val (>) : t -> t -> bool

x < y iff compare x y = -1

x > y iff compare x y = 1

val (=) : t -> t -> bool

x > y iff compare x y = 1

x = y iff compare x y = 0

val (<>) : t -> t -> bool

x = y iff compare x y = 0

x <> y iff compare x y <> 0

val (<=) : t -> t -> bool

x <> y iff compare x y <> 0

x <= y iff compare x y <= 0

val (>=) : t -> t -> bool

x <= y iff compare x y <= 0

x >= y iff compare x y >= 0

val hash : t -> int

hash x returns such z that forall y s.t. x=y, hash y = z

val pp : Format.formatter -> t -> unit

pp ppf x is a pretty printer for the bitvectors.

Could be used standalone or as an argument to the %a format specificator, e.g.,

Format.fprintf "0xBEEF != %a" Bitvec.pp !$"0xBEAF"
val to_binary : t -> string

to_binary x returns a canonical binary representation of x

val of_binary : string -> t

of_binary s returns a bitvector x s.t. to_binary x = s.

val to_string : t -> string

to_string x returns a textual (human readable) representation of the bitvector x.

val of_string : string -> t

of_string s returns a bitvector that corresponds to s.

The set of accepted strings is defined by the following EBNF grammar:

       valid-numbers ::=
        | "0b", bin-digit, {bin-digit}
        | "0o", oct-digit, {oct-digit}
        | "0x", hex-digit, {hex-digit}
        | dec-digit, {dec-digit}

      bin-digit ::= '0' | '1'
      oct-digit ::= '0'-'7'
      dec-digit ::= '0'-'9'
      hex-digit ::= '0'-'9' |'a'-'f'|'A'-'F'

The function is not defined if s is not in valid-numbers.

val fits_int : t -> bool

fits_int x is true if x could be represented with the OCaml int type.

Note: it is not always true that fits_int (int x mod m), since depending on m a negative number might not fit into the OCaml representation. For positive numbers it is true, however.

val to_int : t -> int

to_int x returns an OCaml integer that has the same representation as x.

The function is undefined if not (fits_int x).

val fits_int32 : t -> bool

fits_int32 x is true if x could be represented with the OCaml int type.

Note: it is not always true that fits_int32 (int32 x mod m), since depending on m the negative x may not fit back into the int32 representation. For positive numbers it is true, however.

val to_int32 : t -> int32

to_int32 x returns an OCaml integer that has the same representation as x.

The function is undefined if not (fits_int32 x).

val fits_int64 : t -> bool

fits_int64 x is true if x could be represented with the OCaml int type.

Note: it is not always true that fits_int64 (int64 x mod m), since depending on m the negative x might not fit back into the int64 representation. For positive numbers it is true, however.

val to_int64 : t -> int64

to_int64 x returns an OCaml integer that has the same representation as x.

The function is undefined if not (fits_int64 x).

val to_bigint : t -> Z.t

to_bigint x returns a natural number that corresponds to x.

The returned value is always positive.

val extract : hi:int -> lo:int -> t -> t

extract ~hi ~lo x extracts bits from lo to hi.

The operation is effectively equivalent to (x lsr lo) mod (hi-lo+1)

val select : int list -> t -> t

select bits x builds a bitvector from bits of x.

Returns a bitvector y such that nth bit of it is equal to List.nth bits n bit of x.

Returns zero if bits are empty.

val append : int -> int -> t -> t -> t

append m n x y takes m bits of x and n bits of y and returns their concatenation. The result has m+n bits.

Examples:

  • append 16 16 !$"0xdead" !$"0xbeef" = !$"0xdeadbeef";
  • append 12 20 !$"0xbadadd" !$"0xbadbeef" = !$"0xadddbeef";;
val repeat : int -> times:int -> t -> t

repeat m ~times:n x repeats m bits of x n times.

The result has m*n bits.

val concat : int -> t list -> t

concat m xs concatenates m bits of each x in xs.

The operation is the reduction of the append operation with m=n. The result has m * List.length xs bits and is equal to 0 if xs is empty.

include S with type 'a m := 'a m
val bool : bool -> t

bool x returns one if x and zero otherwise.

val int : int -> t m

int n mod m is n modulo m.

val int32 : int32 -> t m

int32 n mod m is n modulo m.

val int64 : int64 -> t m

int64 n mod m is n modulo m.

val bigint : Z.t -> t m

bigint n mod m is n modulo m.

val zero : t

zero is 0.

val one : t

one is 1.

val ones : t m

ones mod m is a bitvector of size m with all bits set

val succ : t -> t m

succ x mod m is the successor of x modulo m

val nsucc : t -> int -> t m

nsucc x n mod m is the nth successor of x modulo m

val pred : t -> t m

pred x mod m is the predecessor of x modulo m

val npred : t -> int -> t m

npred x n mod m is the nth predecessor of x modulo m

val neg : t -> t m

neg x mod m is the 2-complement of x modulo m.

val lnot : t -> t m

lnot x is the 1-complement of x modulo m.

val abs : t -> t m

abs x mod m absolute value of x modulo m.

The absolute value of x is equal to neg x if msb x and to x otherwise.

val add : t -> t -> t m

add x y mod m is x + y modulo m

val sub : t -> t -> t m

sub x y mod m is x - y modulo m

val mul : t -> t -> t m

mul x y mod m is x * y modulo m

val div : t -> t -> t m

div x y mod m is x / y modulo m,

where / is the truncating towards zero division, that returns ones m if y = 0.

val sdiv : t -> t -> t m

sdiv x y mod m is signed division of x by y modulo m,

The signed division operator is defined in terms of the div operator as follows:

                        /
                        | div x y mod m : if not mx /\ not my
                        | neg (div (neg x) y) mod m if mx /\ not my
      x sdiv y mod m = <
                        | neg (div x (neg y)) mod m if not mx /\ my
                        | div (neg x) (neg y) mod m if mx /\ my
                        \

      where mx = msb x mod m,
        and my = msb y mod m.
val rem : t -> t -> t m

rem x y mod m is the remainder of x / y modulo m.

val srem : t -> t -> t m

srem x y mod m is the signed remainder x / y modulo m.

This version of the signed remainder where the sign follows the dividend, and is defined via the rem operation as follows

                        /
                        | rem x y mod m : if not mx /\ not my
                        | neg (rem (neg x) y) mod m if mx /\ not my
      x srem y mod m = <
                        | neg (rem x (neg y)) mod m if not mx /\ my
                        | neg (rem (neg x) (neg y)) mod m if mx /\ my
                        \

      where mx = msb x mod m,
        and my = msb y mod m.
val smod : t -> t -> t m

smod x y mod m is the signed remainder of x / y modulo m.

This version of the signed remainder where the sign follows the divisor, and is defined in terms of the rem operation as follows:

                        /
                        | u if u = 0
      x smod y mod m = <
                        | v if u <> 0
                        \

                        /
                        | u if not mx /\ not my
                        | add (neg u) y mod m if mx /\ not my
                   v = <
                        | add u x mod m if not mx /\ my
                        | neg u mod m if mx /\ my
                        \

      where mx = msb x mod m,
        and my = msb y mod m,
        and u = rem s t mod m.
val nth : t -> int -> bool m

nth x n mod m is true if nth bit of x is set.

Returns msb x mod m if n >= m and lsb x mod m if n < 0

val msb : t -> bool m

msb x mod m returns the most significand bit of x.

val lsb : t -> bool m

lsb x mod m returns the least significand bit of x.

val logand : t -> t -> t m

logand x y mod m is a bitwise logical and of x and y modulo m

val logor : t -> t -> t m

logor x y mod m is a bitwise logical or of x and y modulo m.

val logxor : t -> t -> t m

logxor x y mod m is exclusive or between x and y modulo m

val lshift : t -> t -> t m

lshift x y mod m shifts x to left by y. Returns 0 is y >= m.

val rshift : t -> t -> t m

rshift x y mod m shifts x right by y bits. Returns 0 if y >= m

val arshift : t -> t -> t m

arshift x y mod m shifts x right by y with msb x filling.

Returns ones mod m if y >= m /\ msb x mod m and zero if y >= m /\ msb x mod m = 0

val gcd : t -> t -> t m

gcd x y mod m returns the greatest common divisor modulo m

gcd x y is the meet operation of the divisibility lattice, with 0 being the top of the lattice and 1 being the bottom, therefore gcd x 0 = gcd x 0 = x.

val lcm : t -> t -> t m

lcm x y mod returns the least common multiplier modulo m.

lcm x y is the meet operation of the divisibility lattice, with 0 being the top of the lattice and 1 being the bottom, therefore lcm x 0 = lcm 0 x = 0

val gcdext : t -> t -> (t * t * t) m

(g,a,b) = gcdext x y mod m, where

  • g = gcd x y mod m,
  • g = (a * x + b * y) mod m.

The operation is well defined if one or both operands are equal to 0, in particular:

  • (x,1,0) = gcdext(x,0),
  • (x,0,1) = gcdext(0,x).
val (!$) : string -> t

!$x is of_string x

val (!!) : int -> t m

!!x mod m is int x mod m

val (~-) : t -> t m

~-x mod m is neg x mod m

val (~~) : t -> t m

~~x mod m is lnot x mod m

val (+) : t -> t -> t m

(x + y) mod m is add x y mod m

val (-) : t -> t -> t m

(x - y) mod m is sub x y mod m

val (*) : t -> t -> t m

(x * y) mod m is mul x y mod m

val (/) : t -> t -> t m

(x / y) mod m is div x y mod m

val (/$) : t -> t -> t m

x /$ y mod m is sdiv x y mod m

val (%) : t -> t -> t m

(x % y) mod m is rem x y mod m

val (%$) : t -> t -> t m

(x %$ y) mod m is smod x y mod m

val (%^) : t -> t -> t m

(x %^ y) mod m is srem x y mod m

val (land) : t -> t -> t m

(x land y) mod m is logand x y mod m

val (lor) : t -> t -> t m

(x lor y) mod m is logor x y mod m

val (lxor) : t -> t -> t m

(x lxor y) mod m is logxor x y mod m

val (lsl) : t -> t -> t m

(x lsl y) mod m lshift x y mod m

val (lsr) : t -> t -> t m

(x lsr y) mod m is rshift x y mod m

val (asr) : t -> t -> t m

(x asr y) = arshift x y

val (++) : t -> int -> t m

(x ++ n) mod m is nsucc x n mod m

val (--) : t -> int -> t m

(x -- n) mod mis npred x n mod m

module type Modulus = sig ... end
module Make (M : Modulus) : sig ... end

module Mx = Make(Modulus) produces a module Mx which implements all operation in S modulo Modulus.modulus, so that all operations return a bitvector directly.

module M1 : S with type 'a m = 'a

M1 specializes Make(struct let modulus = m1 end)

module M8 : S with type 'a m = 'a

M8 specializes Make(struct let modulus = m8 end)

module M32 : S with type 'a m = 'a

M32 specializes Make(struct let modulus = m32 end)

module M64 : S with type 'a m = 'a

M64 specializes Make(struct let modulus = m64 end)

OCaml

Innovation. Community. Security.