package bechamel

  1. Overview
  2. Docs

Source file analyze.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
module OLS = struct
  module Ci95 = struct
    (* 95% confidence interval *)
    type t = { r : float; l : float }

    let pp ppf x = Fmt.pf ppf "@[<hov>%f to %f@]" x.r x.l
    let bad = { r = neg_infinity; l = neg_infinity }
  end

  (* Linear regression inputs *)
  let make_lr_inputs ~responder ~predictors m =
    let responder_accessor = Measurement_raw.get ~label:responder in
    let predictors_accessor =
      Array.map (fun label -> Measurement_raw.get ~label) predictors
    in
    ( Array.init (Array.length m) (fun i ->
          Array.map (fun a -> a m.(i)) predictors_accessor)
    , Array.init (Array.length m) (fun i -> responder_accessor m.(i)) )

  type t =
    { predictors : string array
    ; responder : string
    ; value : (v, [ `Msg of string ]) result
    }

  and v =
    { estimates : float array
    ; ci95 : Ci95.t array option
    ; r_square : float option
    }

  let r_square m ~responder ~predictors r =
    let predictors_matrix, responder_vector =
      make_lr_inputs ~responder ~predictors m
    in
    let sum_responder = Array.fold_left ( +. ) 0. responder_vector in
    let mean = sum_responder /. float (Array.length responder_vector) in
    let tot_ss = ref 0. in
    let res_ss = ref 0. in
    let predicted i =
      let x = ref 0. in
      for j = 0 to Array.length r - 1 do
        x := !x +. (predictors_matrix.(i).(j) *. r.(j))
      done;
      !x
    in
    for i = 0 to Array.length responder_vector - 1 do
      tot_ss := !tot_ss +. ((responder_vector.(i) -. mean) ** 2.);
      res_ss := !res_ss +. ((responder_vector.(i) -. predicted i) ** 2.)
    done;
    1. -. (!res_ss /. !tot_ss)

  (* XXX(dinosaure): see core_bench and [(1/e)^bootstrap_threshold <
     0.05/predictors] which describe area on top of logarithm curve (where
     maximum seems close to 6~7). *)
  let bootstrap_threshold = 10

  let can_bootstrap ~responder ~predictors m =
    let matrix, _ = make_lr_inputs ~responder ~predictors m in
    let non_zero = Array.make (Array.length predictors) 0 in
    let non_zero_cols = ref 0 in
    Array.iter
      (fun row ->
        for i = 0 to Array.length non_zero - 1 do
          if row.(i) <> 0.0 then (
            non_zero.(i) <- non_zero.(i) + 1;
            if non_zero.(i) = bootstrap_threshold then incr non_zero_cols)
        done)
      matrix;
    if !non_zero_cols = Array.length non_zero then true else false

  let () = Random.self_init ()

  let random_indices_in_place ~max arr =
    let len = Array.length arr in
    for i = 0 to len - 1 do
      arr.(i) <- Random.int max
    done

  let quantile_of_array ?(failures = 0) ~len ~low ~high arr =
    Array.sort (compare : float -> float -> int) arr;
    let index q = int_of_float ((float len *. q) +. (0.5 *. float failures)) in
    let extended_get i = if i >= len then infinity else arr.(i) in
    let l = extended_get ((min : int -> int -> int) (index low) (len - 1)) in
    let r = extended_get ((max : int -> int -> int) (index high) failures) in
    Ci95.{ l; r }

  let bootstrap ~trials m ~responder ~predictors =
    let p = Array.length predictors in
    match can_bootstrap ~responder ~predictors m with
    | false -> assert false
    | true ->
        let bootstrap_fails = ref 0 in
        let indices = Array.make (Array.length m) 0 in
        let bootstrap_coeffs = Array.init p (fun _ -> Array.make trials 0.0) in
        for i = 0 to trials - 1 do
          random_indices_in_place indices ~max:(Array.length m);
          let matrix, vector = make_lr_inputs ~responder ~predictors m in
          match Linear_algebra.ols ~in_place:true matrix vector with
          | Ok bt_ols_result ->
              for p = 0 to p - 1 do
                bootstrap_coeffs.(p).(i) <- bt_ols_result.(p)
              done
          | _ ->
              incr bootstrap_fails;
              for p = 0 to p - 1 do
                bootstrap_coeffs.(p).(i) <- neg_infinity
              done
        done;
        Array.init p (fun i ->
            if trials = 0 then Ci95.bad
            else
              quantile_of_array bootstrap_coeffs.(i) ~failures:!bootstrap_fails
                ~len:trials ~low:0.025 ~high:0.975)

  (* Ordinary Least Square *)
  let ols ?bootstrap:(trials = 0) ?r_square:(do_r_square = false) ~responder
      ~predictors m =
    let matrix, vector = make_lr_inputs ~responder ~predictors m in
    match Linear_algebra.ols ~in_place:true matrix vector with
    | Ok estimates ->
        let r_square =
          if do_r_square then Some (r_square m ~responder ~predictors estimates)
          else None
        in
        let ci95 =
          match trials with
          | 0 -> None
          | trials -> Some (bootstrap ~trials ~responder ~predictors m)
        in
        { predictors; responder; value = Ok { estimates; ci95; r_square } }
    | Error _ as err -> { predictors; responder; value = err }

  let pp ~predictors ~responder ppf v =
    Fmt.pf ppf "{ @[";
    for i = 0 to Array.length predictors - 1 do
      Fmt.pf ppf "%s per %s = %f" responder predictors.(i) v.estimates.(i);
      (match v.ci95 with
      | Some ci95 -> Fmt.pf ppf " (confidence: %a)" Ci95.pp ci95.(i)
      | None -> ());
      Fmt.pf ppf ";@ "
    done;
    Fmt.pf ppf "r² = %a@] }" Fmt.(Dump.option float) v.r_square

  let pp ppf x =
    match x.value with
    | Ok v -> pp ~predictors:x.predictors ~responder:x.responder ppf v
    | Error (`Msg err) -> Format.fprintf ppf "%s" err

  let predictors { predictors; _ } = Array.to_list predictors
  let responder { responder; _ } = responder

  let estimates { value; _ } =
    match value with
    | Ok { estimates; _ } -> Some (Array.to_list estimates)
    | Error _ -> None

  let r_square { value; _ } =
    match value with Ok { r_square; _ } -> r_square | Error _ -> None
end

module RANSAC = struct
  (* returns [a, b] such that [f(x) = a*x + b] minimize the distance between
     [sum(fun (x -> (f(x) - v(x))^2)] *)
  let affine_adjustment (r : (float * float) array) =
    let len = float (Array.length r) in
    let mean_x =
      let sum_x = Array.fold_right (fun (x, _) acc -> x +. acc) r 0. in
      sum_x /. len
    in
    let mean_y =
      let sum_y = Array.fold_right (fun (_, y) acc -> y +. acc) r 0. in
      sum_y /. len
    in
    let variance_x =
      let sumvar =
        Array.fold_right
          (fun (x, _) acc ->
            let v = x -. mean_x in
            (v *. v) +. acc)
          r 0.
      in
      sumvar /. len
    in
    let covariance_x_y =
      let sumcovar =
        Array.fold_right
          (fun (x, y) acc ->
            let v = (x -. mean_x) *. (y -. mean_y) in
            v +. acc)
          r 0.
      in
      sumcovar /. len
    in
    let a = covariance_x_y /. variance_x in
    let b = mean_y -. (a *. mean_x) in
    (a, b)

  let quality data (a, b) =
    let acc = ref 0. in
    for i = 0 to Array.length data - 1 do
      let x, y = data.(i) in
      let diff =
        let d = (a *. x) +. b -. y in
        d *. d
      in
      acc := !acc +. diff
    done;
    !acc /. float (Array.length data)

  let ransac_filter_distance (x, y) (a, b) =
    let level = max x (max y (max a b)) in
    abs_float ((a *. x) +. b -. y) /. level

  let ransac_param data =
    { Ransac.model = affine_adjustment
    ; data
    ; subset_size = 10
    ; rounds = 100
    ; distance = ransac_filter_distance
    ; filter_distance = 0.05
    ; minimum_valid = Array.length data / 3
    ; error = quality
    }

  let sum a = Array.fold_left ( +. ) 0. a

  let standard_error ~a ~b (r : (float * float) array) =
    let estimate x = (a *. x) +. b in
    let dy (x, y) =
      let d = y -. estimate x in
      d *. d
    in
    let sum_dy = sum (Array.map dy r) in
    let mean_x =
      sum (Array.map (fun (x, _) -> x) r) /. float (Array.length r)
    in
    let dx (x, _) =
      let d = x -. mean_x in
      d *. d
    in
    sqrt (sum_dy /. float (Array.length r - 2)) /. sqrt (sum (Array.map dx r))

  type t =
    { predictor : string
    ; responder : string
    ; mean_value : float
    ; constant : float
    ; max_value : float * float
    ; min_value : float * float
    ; standard_error : float
    }

  let pp ppf t =
    Fmt.pf ppf "{ @[<hov>%s per %s = %f;@ standard-error = %f;@] }" t.responder
      t.predictor t.mean_value t.standard_error

  let result_column ~predictor ~responder m =
    ( Measurement_raw.get ~label:predictor m
    , Measurement_raw.get ~label:responder m )

  let ransac ?(filter_outliers = true) ~predictor ~responder ml =
    let a = Array.map (result_column ~predictor ~responder) ml in
    let mean_value, constant =
      if filter_outliers then
        match Ransac.ransac (ransac_param a) with
        | None ->
            (* Couldn't extract a model, just return crude affine adjustment *)
            affine_adjustment a
        | Some { Ransac.model; _ } -> model
      else affine_adjustment a
    in
    let min_value =
      Array.fold_left
        (fun (row_min, val_min) (row, value) ->
          let value = (value -. constant) /. row in
          if val_min < value || value <= 0. then (row_min, val_min)
          else (row, value))
        (0., max_float) a
    in
    let correct_float f = classify_float f = FP_normal in
    let max_value =
      Array.fold_left
        (fun (row_max, val_max) (row, value) ->
          let value = (value -. constant) /. row in
          if val_max > value || not (correct_float value) then (row_max, val_max)
          else (row, value))
        (0., min_float) a
    in
    let standard_error = standard_error ~a:mean_value ~b:constant a in
    { predictor
    ; responder
    ; mean_value
    ; constant
    ; min_value
    ; max_value
    ; standard_error
    }

  let responder { responder; _ } = responder
  let predictor { predictor; _ } = predictor
  let mean { mean_value; _ } = mean_value
  let constant { constant; _ } = constant
  let min { min_value; _ } = min_value
  let max { max_value; _ } = max_value
  let error { standard_error; _ } = standard_error
end

type 'a t =
  | OLS :
      { predictors : string array; r_square : bool; bootstrap : int }
      -> OLS.t t
  | RANSAC : { filter_outliers : bool; predictor : string } -> RANSAC.t t

let ols ~r_square ~bootstrap ~predictors =
  OLS { predictors; r_square; bootstrap }

let ransac ~filter_outliers ~predictor = RANSAC { filter_outliers; predictor }

let one : type a. a t -> Measure.witness -> Benchmark.t -> a =
 fun kind e { lr = m; _ } ->
  let label = Measure.label e in
  match kind with
  | OLS { predictors; r_square; bootstrap } ->
      OLS.ols ~bootstrap ~r_square ~predictors ~responder:label m
  | RANSAC { filter_outliers; predictor } ->
      RANSAC.ransac ~filter_outliers ~predictor ~responder:label m

let all :
    type a.
       a t
    -> Measure.witness
    -> (string, Benchmark.t) Hashtbl.t
    -> (string, a) Hashtbl.t =
 fun kind e ms ->
  let ret = Hashtbl.create (Hashtbl.length ms) in
  Hashtbl.iter (fun name m -> Hashtbl.add ret name (one kind e m)) ms;
  ret

let merge :
    type a.
       a t
    -> Measure.witness list
    -> (string, a) Hashtbl.t list
    -> (string, (string, a) Hashtbl.t) Hashtbl.t =
 fun _ instances results ->
  let ret = Hashtbl.create (List.length instances) in
  List.iter2
    (fun instance result -> Hashtbl.add ret (Measure.label instance) result)
    instances results;
  ret
OCaml

Innovation. Community. Security.