package base

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file int63_emul.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
(* A 63bit integer is a 64bit integer with its bits shifted to the left
   and its lowest bit set to 0.
   This is the same kind of encoding as OCaml int on 64bit architecture.
   The only difference being the lowest bit (immediate bit) set to 1. *)

open! Import
include Int64_replace_polymorphic_compare

module T0 = struct
  module T = struct
    type t = int64
    [@@deriving_inline compare ~localize, globalize, hash, sexp, sexp_grammar]

    let compare__local = (compare_int64__local : t -> t -> int)
    let compare = (fun a b -> compare__local a b : t -> t -> int)
    let (globalize : t -> t) = (globalize_int64 : t -> t)

    let (hash_fold_t : Ppx_hash_lib.Std.Hash.state -> t -> Ppx_hash_lib.Std.Hash.state) =
      hash_fold_int64

    and (hash : t -> Ppx_hash_lib.Std.Hash.hash_value) =
      let func = hash_int64 in
      fun x -> func x
    ;;

    let t_of_sexp = (int64_of_sexp : Sexplib0.Sexp.t -> t)
    let sexp_of_t = (sexp_of_int64 : t -> Sexplib0.Sexp.t)
    let (t_sexp_grammar : t Sexplib0.Sexp_grammar.t) = int64_sexp_grammar

    [@@@end]

    let hashable : t Hashable.t = { hash; compare; sexp_of_t }
  end

  include T
  include Comparator.Make (T)
end

module Conv = Int_conversions

module W : sig
  include module type of struct
    include T0
  end

  type t = int64

  val wrap_exn : Stdlib.Int64.t -> t
  val wrap_modulo : Stdlib.Int64.t -> t
  val unwrap : t -> Stdlib.Int64.t

  (** Returns a non-negative int64 that is equal to the input int63 modulo 2^63. *)
  val unwrap_unsigned : t -> Stdlib.Int64.t

  val invariant : t -> unit
  val add : t -> t -> t
  val sub : t -> t -> t
  val neg : t -> t
  val abs : t -> t
  val succ : t -> t
  val pred : t -> t
  val mul : t -> t -> t
  val pow : t -> t -> t
  val div : t -> t -> t
  val rem : t -> t -> t
  val popcount : t -> int
  val bit_not : t -> t
  val bit_xor : t -> t -> t
  val bit_or : t -> t -> t
  val bit_and : t -> t -> t
  val shift_left : t -> int -> t
  val shift_right : t -> int -> t
  val shift_right_logical : t -> int -> t
  val min_value : t
  val max_value : t
  val to_int64 : t -> Stdlib.Int64.t
  val of_int64 : Stdlib.Int64.t -> t option
  val of_int64_exn : Stdlib.Int64.t -> t
  val of_int64_trunc : Stdlib.Int64.t -> t
  val compare : t -> t -> int
  val compare__local : t -> t -> int
  val equal__local : t -> t -> bool
  val ceil_pow2 : t -> t
  val floor_pow2 : t -> t
  val ceil_log2 : t -> int
  val floor_log2 : t -> int
  val is_pow2 : t -> bool
  val clz : t -> int
  val ctz : t -> int
end = struct
  include T0

  type t = int64

  let wrap_exn x =
    (* Raises if the int64 value does not fit on int63. *)
    Conv.int64_fit_on_int63_exn x;
    Stdlib.Int64.mul x 2L
  ;;

  let wrap x =
    if Conv.int64_is_representable_as_int63 x then Some (Stdlib.Int64.mul x 2L) else None
  ;;

  let wrap_modulo x = Stdlib.Int64.mul x 2L
  let unwrap x = Stdlib.Int64.shift_right x 1
  let unwrap_unsigned x = Stdlib.Int64.shift_right_logical x 1

  (* This does not use wrap or unwrap to avoid generating exceptions in the case of
     overflows. This is to preserve the semantics of int type on 64 bit architecture. *)
  let f2 f a b =
    Stdlib.Int64.mul (f (Stdlib.Int64.shift_right a 1) (Stdlib.Int64.shift_right b 1)) 2L
  ;;

  let mask = 0xffff_ffff_ffff_fffeL
  let m x = Stdlib.Int64.logand x mask
  let invariant t = assert (m t = t)
  let add x y = Stdlib.Int64.add x y
  let sub x y = Stdlib.Int64.sub x y
  let neg x = Stdlib.Int64.neg x
  let abs x = Stdlib.Int64.abs x
  let one = wrap_exn 1L
  let succ a = add a one
  let pred a = sub a one
  let min_value = m Stdlib.Int64.min_int
  let max_value = m Stdlib.Int64.max_int
  let bit_not x = m (Stdlib.Int64.lognot x)
  let bit_and = Stdlib.Int64.logand
  let bit_xor = Stdlib.Int64.logxor
  let bit_or = Stdlib.Int64.logor
  let shift_left x i = Stdlib.Int64.shift_left x i
  let shift_right x i = m (Stdlib.Int64.shift_right x i)
  let shift_right_logical x i = m (Stdlib.Int64.shift_right_logical x i)
  let pow = f2 Int_math.Private.int63_pow_on_int64
  let mul a b = Stdlib.Int64.mul a (Stdlib.Int64.shift_right b 1)
  let div a b = wrap_modulo (Stdlib.Int64.div a b)
  let rem a b = Stdlib.Int64.rem a b
  let popcount x = Popcount.int64_popcount x
  let to_int64 t = unwrap t
  let of_int64 t = wrap t
  let of_int64_exn t = wrap_exn t
  let of_int64_trunc t = wrap_modulo t
  let t_of_sexp x = wrap_exn (int64_of_sexp x)
  let sexp_of_t x = sexp_of_int64 (unwrap x)
  let compare (x : t) y = compare x y
  let compare__local (x : t) y = compare__local x y
  let equal__local (x : t) y = equal__local x y
  let is_pow2 x = Int64.is_pow2 (unwrap x)

  let clz x =
    (* We run Int64.clz directly on the wrapped int63 value. This is correct because the
       bits of the int63_emul are left-aligned in the Int64. *)
    Int64.clz x
  ;;

  let ctz x = Int64.ctz (unwrap x)
  let floor_pow2 x = Int64.floor_pow2 (unwrap x) |> wrap_exn
  let ceil_pow2 x = Int64.floor_pow2 (unwrap x) |> wrap_exn
  let floor_log2 x = Int64.floor_log2 (unwrap x)
  let ceil_log2 x = Int64.ceil_log2 (unwrap x)
end

open W

module T = struct
  type t = W.t [@@deriving_inline globalize, hash, sexp, sexp_grammar]

  let (globalize : t -> t) = (W.globalize : t -> t)

  let (hash_fold_t : Ppx_hash_lib.Std.Hash.state -> t -> Ppx_hash_lib.Std.Hash.state) =
    W.hash_fold_t

  and (hash : t -> Ppx_hash_lib.Std.Hash.hash_value) =
    let func = W.hash in
    fun x -> func x
  ;;

  let t_of_sexp = (W.t_of_sexp : Sexplib0.Sexp.t -> t)
  let sexp_of_t = (W.sexp_of_t : t -> Sexplib0.Sexp.t)
  let (t_sexp_grammar : t Sexplib0.Sexp_grammar.t) = W.t_sexp_grammar

  [@@@end]

  type comparator_witness = W.comparator_witness

  let comparator = W.comparator
  let compare = W.compare
  let compare__local = W.compare__local
  let equal__local = W.equal__local
  let invariant = W.invariant

  (* We don't expect [hash] to follow the behavior of int in 64bit architecture *)
  let _ = hash
  let hash (x : t) = Stdlib.Hashtbl.hash x
  let hashable : t Hashable.t = { hash; compare; sexp_of_t }
  let invalid_str x = Printf.failwithf "Int63.of_string: invalid input %S" x ()

  (*
     "sign" refers to whether the number starts with a '-'
     "signedness = false" means the rest of the number is parsed as unsigned and then cast
     to signed with wrap-around modulo 2^i
     "signedness = true" means no such craziness happens

     The terminology and the logic is due to the code in byterun/ints.c in ocaml 4.03
     ([parse_sign_and_base] function).

     Signedness equals true for plain decimal number (e.g. 1235, -6789)

     Signedness equals false in the following cases:
     - [0xffff], [-0xffff] (hexadecimal representation)
     - [0b0101], [-0b0101] (binary representation)
     - [0o1237], [-0o1237] (octal representation)
     - [0u9812], [-0u9812] (unsigned decimal representation - available from OCaml 4.03) *)
  let sign_and_signedness x =
    let len = String.length x in
    let open Int_replace_polymorphic_compare in
    let pos, sign =
      if 0 < len
      then (
        match x.[0] with
        | '-' -> 1, `Neg
        | '+' -> 1, `Pos
        | _ -> 0, `Pos)
      else 0, `Pos
    in
    if pos + 2 < len
    then (
      let c1 = x.[pos] in
      let c2 = x.[pos + 1] in
      match c1, c2 with
      | '0', '0' .. '9' -> sign, true
      | '0', _ -> sign, false
      | _ -> sign, true)
    else sign, true
  ;;

  let to_string x = Stdlib.Int64.to_string (unwrap x)

  let of_string_raw str =
    let sign, signedness = sign_and_signedness str in
    if signedness
    then of_int64_exn (Stdlib.Int64.of_string str)
    else (
      let pos_str =
        match sign with
        | `Neg -> String.sub str ~pos:1 ~len:(String.length str - 1)
        | `Pos -> str
      in
      let int64 = Stdlib.Int64.of_string pos_str in
      (* unsigned 63-bit int must parse as a positive signed 64-bit int *)
      if Int64_replace_polymorphic_compare.( < ) int64 0L then invalid_str str;
      let int63 = wrap_modulo int64 in
      match sign with
      | `Neg -> neg int63
      | `Pos -> int63)
  ;;

  let of_string str =
    try of_string_raw str with
    | _ -> invalid_str str
  ;;

  let of_string_opt str =
    match of_string_raw str with
    | t -> Some t
    | exception _ -> None
  ;;

  let bswap16 t = wrap_modulo (Int64.bswap16 (unwrap t))
  let bswap32 t = wrap_modulo (Int64.bswap32 (unwrap t))
  let bswap48 t = wrap_modulo (Int64.bswap48 (unwrap t))
end

include T

let num_bits = 63
let float_lower_bound = Float0.lower_bound_for_int num_bits
let float_upper_bound = Float0.upper_bound_for_int num_bits
let shift_right_logical = shift_right_logical
let shift_right = shift_right
let shift_left = shift_left
let bit_not = bit_not
let bit_xor = bit_xor
let bit_or = bit_or
let bit_and = bit_and
let popcount = popcount
let abs = abs
let pred = pred
let succ = succ
let pow = pow
let rem = rem
let neg = neg
let max_value = max_value
let min_value = min_value
let minus_one = wrap_exn Stdlib.Int64.minus_one
let one = wrap_exn Stdlib.Int64.one
let zero = wrap_exn Stdlib.Int64.zero
let is_pow2 = is_pow2
let floor_pow2 = floor_pow2
let ceil_pow2 = ceil_pow2
let floor_log2 = floor_log2
let ceil_log2 = ceil_log2
let clz = clz
let ctz = ctz
let to_float x = Stdlib.Int64.to_float (unwrap x)
let of_float_unchecked x = wrap_modulo (Stdlib.Int64.of_float x)

let of_float t =
  let open Float_replace_polymorphic_compare in
  if t >= float_lower_bound && t <= float_upper_bound
  then wrap_modulo (Stdlib.Int64.of_float t)
  else
    Printf.invalid_argf
      "Int63.of_float: argument (%f) is out of range or NaN"
      (Float0.box t)
      ()
;;

let of_int64 = of_int64
let of_int64_exn = of_int64_exn
let of_int64_trunc = of_int64_trunc
let to_int64 = to_int64

include Comparable.With_zero (struct
  include T

  let zero = zero
end)

let between t ~low ~high = low <= t && t <= high
let clamp_unchecked t ~min:min_ ~max:max_ = min t max_ |> max min_

let clamp_exn t ~min ~max =
  assert (min <= max);
  clamp_unchecked t ~min ~max
;;

let clamp t ~min ~max =
  if min > max
  then
    Or_error.error_s
      (Sexp.message
         "clamp requires [min <= max]"
         [ "min", T.sexp_of_t min; "max", T.sexp_of_t max ])
  else Ok (clamp_unchecked t ~min ~max)
;;

let ( / ) = div
let ( * ) = mul
let ( - ) = sub
let ( + ) = add
let ( ~- ) = neg
let ( ** ) b e = pow b e
let incr r = r := !r + one
let decr r = r := !r - one

(* We can reuse conversion function from/to int64 here. *)
let of_int x = wrap_exn (Conv.int_to_int64 x)
let of_int_exn x = of_int x
let to_int x = Conv.int64_to_int (unwrap x)
let to_int_exn x = Conv.int64_to_int_exn (unwrap x)
let to_int_trunc x = Conv.int64_to_int_trunc (unwrap x)
let of_int32 x = wrap_exn (Conv.int32_to_int64 x)
let of_int32_exn x = of_int32 x
let to_int32 x = Conv.int64_to_int32 (unwrap x)
let to_int32_exn x = Conv.int64_to_int32_exn (unwrap x)
let to_int32_trunc x = Conv.int64_to_int32_trunc (unwrap x)
let of_nativeint x = of_int64 (Conv.nativeint_to_int64 x)
let of_nativeint_exn x = wrap_exn (Conv.nativeint_to_int64 x)
let of_nativeint_trunc x = of_int64_trunc (Conv.nativeint_to_int64 x)
let to_nativeint x = Conv.int64_to_nativeint (unwrap x)
let to_nativeint_exn x = Conv.int64_to_nativeint_exn (unwrap x)
let to_nativeint_trunc x = Conv.int64_to_nativeint_trunc (unwrap x)

include Int_string_conversions.Make (T)

include Int_string_conversions.Make_hex (struct
  type t = T.t [@@deriving_inline compare ~localize, hash]

  let compare__local = (T.compare__local : t -> t -> int)
  let compare = (fun a b -> compare__local a b : t -> t -> int)

  let (hash_fold_t : Ppx_hash_lib.Std.Hash.state -> t -> Ppx_hash_lib.Std.Hash.state) =
    T.hash_fold_t

  and (hash : t -> Ppx_hash_lib.Std.Hash.hash_value) =
    let func = T.hash in
    fun x -> func x
  ;;

  [@@@end]

  let zero = zero
  let neg = ( ~- )
  let ( < ) = ( < )

  let to_string i =
    (* the use of [unwrap_unsigned] here is important for the case of [min_value] *)
    Printf.sprintf "%Lx" (unwrap_unsigned i)
  ;;

  let of_string s = of_string ("0x" ^ s)
  let module_name = "Base.Int63.Hex"
end)

include Pretty_printer.Register (struct
  type nonrec t = t

  let to_string x = to_string x
  let module_name = "Base.Int63"
end)

module Pre_O = struct
  let ( + ) = ( + )
  let ( - ) = ( - )
  let ( * ) = ( * )
  let ( / ) = ( / )
  let ( ~- ) = ( ~- )
  let ( ** ) = ( ** )

  include (Int64_replace_polymorphic_compare : Comparisons.Infix with type t := t)

  let abs = abs
  let neg = neg
  let zero = zero
  let of_int_exn = of_int_exn
end

module O = struct
  include Pre_O

  include Int_math.Make (struct
    type nonrec t = t

    include Pre_O

    let rem = rem
    let to_float = to_float
    let of_float = of_float
    let of_string = T.of_string
    let to_string = T.to_string
  end)

  let ( land ) = bit_and
  let ( lor ) = bit_or
  let ( lxor ) = bit_xor
  let lnot = bit_not
  let ( lsl ) = shift_left
  let ( asr ) = shift_right
  let ( lsr ) = shift_right_logical
end

include O

include Int_string_conversions.Make_binary (struct
  type t = T.t [@@deriving_inline compare ~localize, equal ~localize, hash]

  let compare__local = (T.compare__local : t -> t -> int)
  let compare = (fun a b -> compare__local a b : t -> t -> int)
  let equal__local = (T.equal__local : t -> t -> bool)
  let equal = (fun a b -> equal__local a b : t -> t -> bool)

  let (hash_fold_t : Ppx_hash_lib.Std.Hash.state -> t -> Ppx_hash_lib.Std.Hash.state) =
    T.hash_fold_t

  and (hash : t -> Ppx_hash_lib.Std.Hash.hash_value) =
    let func = T.hash in
    fun x -> func x
  ;;

  [@@@end]

  let ( land ) = ( land )
  let ( lsr ) = ( lsr )
  let clz = clz
  let num_bits = num_bits
  let one = one
  let to_int_exn = to_int_exn
  let zero = zero
end)

(* [Int63] and [Int63.O] agree value-wise *)

module Repr = struct
  type emulated = t

  type ('underlying_type, 'intermediate_type) t =
    | Int : (int, int) t
    | Int64 : (int64, emulated) t
end

let repr = Repr.Int64

(* Include type-specific [Replace_polymorphic_compare] at the end, after
   including functor application that could shadow its definitions. This is
   here so that efficient versions of the comparison functions are exported by
   this module. *)
include Int64_replace_polymorphic_compare
OCaml

Innovation. Community. Security.