package base

  1. Overview
  2. Docs
Legend:
Library
Module
Module type
Parameter
Class
Class type

A hash table is a mutable data structure implementing a map between keys and values. It supports constant-time lookup and in-place modification.

Usage

As a simple example, we'll create a hash table with string keys using the create constructor, which expects a module defining the key's type:

let h = Hashtbl.create (module String);;
val h : (string, '_a) Hashtbl.t = <abstr>

We can set the values of individual keys with set. If the key already has a value, it will be overwritten.

      Hashtbl.set h ~key:"foo" ~data:5;;
      - : unit = ()

      Hashtbl.set h ~key:"foo" ~data:6;;
      - : unit = ()

      Hashtbl.set h ~key:"bar" ~data:6;;
      - : unit = ()

We can access values by key, or dump all of the hash table's data:

      Hashtbl.find h "foo";;
      - : int option = Some 6

      Hashtbl.find_exn h "foo";;
      - : int = 6

      Hashtbl.to_alist h;;
      - : (string * int) list = [("foo", 6); ("bar", 6)]

change lets us change a key's value by applying the given function:

      Hashtbl.change h "foo" (fun x ->
       match x with
       | Some x -> Some (x * 2)
       | None -> None
      );;
      - : unit = ()

      Hashtbl.to_alist h;;
      - : (string * int) list = [("foo", 12); ("bar", 6)]

We can use merge to merge two hashtables with fine-grained control over how we choose values when a key is present in the first ("left") hashtable, the second ("right"), or both. Here, we'll cons the values when both hashtables have a key:

      let h1 = Hashtbl.of_alist_exn (module Int) [(1, 5); (2, 3232)] in
      let h2 = Hashtbl.of_alist_exn (module Int) [(1, 3)] in
      Hashtbl.merge h1 h2 ~f:(fun ~key:_ -> function
        | `Left x -> Some (`Left x)
        | `Right x -> Some (`Right x)
        | `Both (x, y) -> if x=y then None else Some (`Both (x,y))
      ) |> Hashtbl.to_alist;;
      - : (int * [> `Both of int * int | `Left of int | `Right of int ]) list =
      [(2, `Left 3232); (1, `Both (5, 3))]

Interface

val hash : 'a -> int
val hash_param : int -> int -> 'a -> int
type (!'a, !'b) t
val sexp_of_t : ('a -> Sexp.t) -> ('b -> Sexp.t) -> ('a, 'b) t -> Sexp.t

We provide a sexp_of_t but not a t_of_sexp for this type because one needs to be explicit about the hash and comparison functions used when creating a hashtable. Note that Hashtbl.Poly.t does have [@@deriving sexp], and uses OCaml's built-in polymorphic comparison and and polymorphic hashing.

Creators

val create : ?growth_allowed:bool -> ?size:int -> 'a Key.t -> ('a, 'b) t

The module you pass to create must have a type that is hashable, sexpable, and comparable.

Example:

        Hashtbl.create (module Int);;
        - : (int, '_a) Hashtbl.t = <abstr>;;
val of_alist : ?growth_allowed:bool -> ?size:int -> 'a Key.t -> ('a * 'b) list -> [ `Ok of ('a, 'b) t | `Duplicate_key of 'a ]

Example:

         Hashtbl.of_alist (module Int) [(3, "something"); (2, "whatever")]
         - : [ `Duplicate_key of int | `Ok of (int, string) Hashtbl.t ] = `Ok <abstr>
val of_alist_report_all_dups : ?growth_allowed:bool -> ?size:int -> 'a Key.t -> ('a * 'b) list -> [ `Ok of ('a, 'b) t | `Duplicate_keys of 'a list ]

Whereas of_alist will report Duplicate_key no matter how many dups there are in your list, of_alist_report_all_dups will report each and every duplicate entry.

For example:

        Hashtbl.of_alist (module Int) [(1, "foo"); (1, "bar"); (2, "foo"); (2, "bar")];;
        - : [ `Duplicate_key of int | `Ok of (int, string) Hashtbl.t ] = `Duplicate_key 1

        Hashtbl.of_alist_report_all_dups (module Int) [(1, "foo"); (1, "bar"); (2, "foo"); (2, "bar")];;
        - : [ `Duplicate_keys of int list | `Ok of (int, string) Hashtbl.t ] = `Duplicate_keys [1; 2]
val of_alist_or_error : ?growth_allowed:bool -> ?size:int -> 'a Key.t -> ('a * 'b) list -> ('a, 'b) t Or_error.t
val of_alist_exn : ?growth_allowed:bool -> ?size:int -> 'a Key.t -> ('a * 'b) list -> ('a, 'b) t
val of_alist_multi : ?growth_allowed:bool -> ?size:int -> 'a Key.t -> ('a * 'b) list -> ('a, 'b list) t

Creates a "multi" hashtable, i.e., a hashtable where each key points to a list potentially containing multiple values. So instead of short-circuiting with a `Duplicate_key variant on duplicates, as in of_alist, of_alist_multi folds those values into a list for the given key:

      let h = Hashtbl.of_alist_multi (module Int) [(1, "a"); (1, "b"); (2, "c"); (2, "d")];;
      val h : (int, string list) Hashtbl.t = <abstr>

      Hashtbl.find_exn h 1;;
      - : string list = ["b"; "a"]
val create_mapped : ?growth_allowed:bool -> ?size:int -> 'a Key.t -> get_key:('r -> 'a) -> get_data:('r -> 'b) -> 'r list -> [ `Ok of ('a, 'b) t | `Duplicate_keys of 'a list ]

Applies the get_key and get_data functions to the 'r list to create the initial keys and values, respectively, for the new hashtable.

create_mapped get_key get_data [x1;...;xn]
= of_alist [get_key x1, get_data x1; ...; get_key xn, get_data xn]

Example:

        let h =
          Hashtbl.create_mapped (module Int)
            ~get_key:(local_ (fun x -> x))
            ~get_data:(local_ (fun x -> x + 1))
           [1; 2; 3];;
        val h : [ `Duplicate_keys of int list | `Ok of (int, int) Hashtbl.t ] = `Ok <abstr>

        let h =
          match h with
          | `Ok x -> x
          | `Duplicate_keys _ -> failwith ""
        in
        Hashtbl.find_exn h 1;;
        - : int = 2
val create_with_key : ?growth_allowed:bool -> ?size:int -> 'a Key.t -> get_key:('r -> 'a) -> 'r list -> [ `Ok of ('a, 'r) t | `Duplicate_keys of 'a list ]
create_with_key ~get_key [x1;...;xn]
= of_alist [get_key x1, x1; ...; get_key xn, xn] 
val create_with_key_or_error : ?growth_allowed:bool -> ?size:int -> 'a Key.t -> get_key:('r -> 'a) -> 'r list -> ('a, 'r) t Or_error.t
val create_with_key_exn : ?growth_allowed:bool -> ?size:int -> 'a Key.t -> get_key:('r -> 'a) -> 'r list -> ('a, 'r) t
val group : ?growth_allowed:bool -> ?size:int -> 'a Key.t -> get_key:('r -> 'a) -> get_data:('r -> 'b) -> combine:('b -> 'b -> 'b) -> 'r list -> ('a, 'b) t

Like create_mapped, applies the get_key and get_data functions to the 'r list to create the initial keys and values, respectively, for the new hashtable -- and then, like add_multi, folds together values belonging to the same keys. Here, though, the function used for the folding is given by combine (instead of just being a cons).

Example:

         Hashtbl.group (module Int)
           ~get_key:(local_ (fun x -> x / 2))
           ~get_data:(local_ (fun x -> x))
           ~combine:(local_ (fun x y -> x * y))
            [ 1; 2; 3; 4]
         |> Hashtbl.to_alist;;
         - : (int * int) list = [(2, 4); (1, 6); (0, 1)]

Accessors

type 'a key = 'a
val sexp_of_key : ('a, _) t -> 'a key -> Sexp.t
val clear : (_, _) t -> unit
val copy : ('a, 'b) t -> ('a, 'b) t
val fold : ('a, 'b) t -> init:'acc -> f:(key:'a key -> data:'b -> 'acc -> 'acc) -> 'acc

Attempting to modify (set, remove, etc.) the hashtable during iteration (fold, iter, iter_keys, iteri) will raise an exception.

val iter_keys : ('a, _) t -> f:('a key -> unit) -> unit
val iter : (_, 'b) t -> f:('b -> unit) -> unit
val iteri : ('a, 'b) t -> f:(key:'a key -> data:'b -> unit) -> unit

Iterates over both keys and values.

Example:

      let h = Hashtbl.of_alist_exn (module Int) [(1, 4); (5, 6)] in
      Hashtbl.iteri h ~f:(fun ~key ~data ->
        print_endline (Printf.sprintf "%d-%d" key data));;
      1-4
      5-6
      - : unit = ()
val existsi : ('a, 'b) t -> f:(key:'a key -> data:'b -> bool) -> bool
val exists : (_, 'b) t -> f:('b -> bool) -> bool
val for_alli : ('a, 'b) t -> f:(key:'a key -> data:'b -> bool) -> bool
val for_all : (_, 'b) t -> f:('b -> bool) -> bool
val counti : ('a, 'b) t -> f:(key:'a key -> data:'b -> bool) -> int
val count : (_, 'b) t -> f:('b -> bool) -> int
val length : (_, _) t -> int
val capacity : (_, _) t -> int
val is_empty : (_, _) t -> bool
val mem : ('a, _) t -> 'a key -> bool
val remove : ('a, _) t -> 'a key -> unit
val choose : ('a, 'b) t -> ('a key * 'b) option

Choose an arbitrary key/value pair of a hash table. Returns None if t is empty.

The choice is deterministic. Calling choose multiple times on the same table returns the same key/value pair, so long as the table is not mutated in between. Beyond determinism, no guarantees are made about how the choice is made. Expect bias toward certain hash values.

This hash bias can lead to degenerate performance in some cases, such as clearing a hash table using repeated choose and remove. At each iteration, finding the next element may have to scan farther from its initial hash value.

val choose_exn : ('a, 'b) t -> 'a key * 'b

Like choose. Raises if t is empty.

val choose_randomly : ?random_state:Random.State.t -> ('a, 'b) t -> ('a key * 'b) option

Chooses a random key/value pair of a hash table. Returns None if t is empty.

The choice is distributed uniformly across hash values, rather than across keys themselves. As a consequence, the closer the keys are to evenly spaced out in the table, the closer this function will be to a uniform choice of keys.

This function may be preferable to choose when nondeterministic choice is acceptable, and bias toward certain hash values is undesirable.

val choose_randomly_exn : ?random_state:Random.State.t -> ('a, 'b) t -> 'a key * 'b

Like choose_randomly. Raises if t is empty.

val set : ('a, 'b) t -> key:'a key -> data:'b -> unit

Sets the given key to data.

val add : ('a, 'b) t -> key:'a key -> data:'b -> [ `Ok | `Duplicate ]

add and add_exn leave the table unchanged if the key was already present.

val add_exn : ('a, 'b) t -> key:'a key -> data:'b -> unit
val change : ('a, 'b) t -> 'a key -> f:('b option -> 'b option) -> unit

change t key ~f changes t's value for key to be f (find t key).

val update : ('a, 'b) t -> 'a key -> f:('b option -> 'b) -> unit

update t key ~f is change t key ~f:(fun o -> Some (f o)).

val update_and_return : ('a, 'b) t -> 'a key -> f:('b option -> 'b) -> 'b

update_and_return t key ~f is update, but returns the result of f o.

val map : ('a, 'b) t -> f:('b -> 'c) -> ('a, 'c) t

map t f returns a new table with values replaced by the result of applying f to the current values.

Example:

      let h = Hashtbl.of_alist_exn (module Int) [(1, 4); (5, 6)] in
      let h' = Hashtbl.map h ~f:(local_ (fun x -> x * 2)) in
      Hashtbl.to_alist h';;
      - : (int * int) list = [(5, 12); (1, 8)]
val mapi : ('a, 'b) t -> f:(key:'a key -> data:'b -> 'c) -> ('a, 'c) t

Like map, but the function f takes both key and data as arguments.

val filter_map : ('a, 'b) t -> f:('b -> 'c option) -> ('a, 'c) t

Returns a new table by filtering the given table's values by f: the keys for which f applied to the current value returns Some are kept, and those for which it returns None are discarded.

Example:

      let h = Hashtbl.of_alist_exn (module Int) [(1, 4); (5, 6)] in
      Hashtbl.filter_map h ~f:(local_ (fun x -> if x > 5 then Some x else None))
      |> Hashtbl.to_alist;;
      - : (int * int) list = [(5, 6)]
val filter_mapi : ('a, 'b) t -> f:(key:'a key -> data:'b -> 'c option) -> ('a, 'c) t

Like filter_map, but the function f takes both key and data as arguments.

val filter_keys : ('a, 'b) t -> f:('a key -> bool) -> ('a, 'b) t
val filter : ('a, 'b) t -> f:('b -> bool) -> ('a, 'b) t
val filteri : ('a, 'b) t -> f:(key:'a key -> data:'b -> bool) -> ('a, 'b) t
val partition_map : ('a, 'b) t -> f:('b -> ('c, 'd) Either.t) -> ('a, 'c) t * ('a, 'd) t

Returns new tables with bound values partitioned by f applied to the bound values.

val partition_mapi : ('a, 'b) t -> f:(key:'a key -> data:'b -> ('c, 'd) Either.t) -> ('a, 'c) t * ('a, 'd) t

Like partition_map, but the function f takes both key and data as arguments.

val partition_tf : ('a, 'b) t -> f:('b -> bool) -> ('a, 'b) t * ('a, 'b) t

Returns a pair of tables (t1, t2), where t1 contains all the elements of the initial table which satisfy the predicate f, and t2 contains the rest.

val partitioni_tf : ('a, 'b) t -> f:(key:'a key -> data:'b -> bool) -> ('a, 'b) t * ('a, 'b) t

Like partition_tf, but the function f takes both key and data as arguments.

val find_or_add : ('a, 'b) t -> 'a key -> default:(unit -> 'b) -> 'b

find_or_add t k ~default returns the data associated with key k if it is in the table t, and otherwise assigns k the value returned by default ().

val findi_or_add : ('a, 'b) t -> 'a key -> default:('a key -> 'b) -> 'b

Like find_or_add but default takes the key as an argument.

val find : ('a, 'b) t -> 'a key -> 'b option

find t k returns Some (the current binding) of k in t, or None if no such binding exists.

val find_exn : ('a, 'b) t -> 'a key -> 'b

find_exn t k returns the current binding of k in t, or raises Stdlib.Not_found or Not_found_s if no such binding exists.

val find_and_call : ('a, 'b) t -> 'a key -> if_found:('b -> 'c) -> if_not_found:('a key -> 'c) -> 'c

find_and_call t k ~if_found ~if_not_found

is equivalent to:

match find t k with Some v -> if_found v | None -> if_not_found k

except that it doesn't allocate the option.

val find_and_call1 : ('a, 'b) t -> 'a key -> a:'d -> if_found:('b -> 'd -> 'c) -> if_not_found:('a key -> 'd -> 'c) -> 'c

Just like find_and_call, but takes an extra argument which is passed to if_found and if_not_found, so that the client code can avoid allocating closures or using refs to pass this additional information. This function is only useful in code which tries to minimize heap allocation.

val find_and_call2 : ('a, 'b) t -> 'a key -> a:'d -> b:'e -> if_found:('b -> 'd -> 'e -> 'c) -> if_not_found:('a key -> 'd -> 'e -> 'c) -> 'c
val findi_and_call : ('a, 'b) t -> 'a key -> if_found:(key:'a key -> data:'b -> 'c) -> if_not_found:('a key -> 'c) -> 'c
val findi_and_call1 : ('a, 'b) t -> 'a key -> a:'d -> if_found:(key:'a key -> data:'b -> 'd -> 'c) -> if_not_found:('a key -> 'd -> 'c) -> 'c
val findi_and_call2 : ('a, 'b) t -> 'a key -> a:'d -> b:'e -> if_found:(key:'a key -> data:'b -> 'd -> 'e -> 'c) -> if_not_found:('a key -> 'd -> 'e -> 'c) -> 'c
val find_and_remove : ('a, 'b) t -> 'a key -> 'b option

find_and_remove t k returns Some (the current binding) of k in t and removes it, or None is no such binding exists.

val merge : ('k, 'a) t -> ('k, 'b) t -> f: (key:'k key -> [ `Left of 'a | `Right of 'b | `Both of 'a * 'b ] -> 'c option) -> ('k, 'c) t

Merges two hashtables.

The result of merge f h1 h2 has as keys the set of all k in the union of the sets of keys of h1 and h2 for which d(k) is not None, where:

d(k) =

  • f ~key:k (`Left d1) if k in h1 maps to d1, and h2 does not have data for k;
  • f ~key:k (`Right d2) if k in h2 maps to d2, and h1 does not have data for k;
  • f ~key:k (`Both (d1, d2)) otherwise, where k in h1 maps to d1 and k in h2 maps to d2.

Each key k is mapped to a single piece of data x, where d(k) = Some x.

Example:

      let h1 = Hashtbl.of_alist_exn (module Int) [(1, 5); (2, 3232)] in
      let h2 = Hashtbl.of_alist_exn (module Int) [(1, 3)] in
      Hashtbl.merge h1 h2 ~f:(fun ~key:_ -> function
        | `Left x -> Some (`Left x)
        | `Right x -> Some (`Right x)
        | `Both (x, y) -> if x=y then None else Some (`Both (x,y))
      ) |> Hashtbl.to_alist;;
      - : (int * [> `Both of int * int | `Left of int | `Right of int ]) list =
      [(2, `Left 3232); (1, `Both (5, 3))]
val merge_into : src:('k, 'a) t -> dst:('k, 'b) t -> f: (key:'k key -> 'a -> 'b option -> 'b Dictionary_mutable.Merge_into_action.t) -> unit

Every key in src will be removed or set in dst according to the return value of f.

val keys : ('a, _) t -> 'a key list

Returns the list of all keys for given hashtable.

val data : (_, 'b) t -> 'b list

Returns the list of all data for given hashtable.

val filter_keys_inplace : ('a, _) t -> f:('a key -> bool) -> unit

filter_inplace t ~f removes all the elements from t that don't satisfy f.

val filter_inplace : (_, 'b) t -> f:('b -> bool) -> unit
val filteri_inplace : ('a, 'b) t -> f:(key:'a key -> data:'b -> bool) -> unit
val map_inplace : (_, 'b) t -> f:('b -> 'b) -> unit

map_inplace t ~f applies f to all elements in t, transforming them in place.

val mapi_inplace : ('a, 'b) t -> f:(key:'a key -> data:'b -> 'b) -> unit
val filter_map_inplace : (_, 'b) t -> f:('b -> 'b option) -> unit

filter_map_inplace combines the effects of map_inplace and filter_inplace.

val filter_mapi_inplace : ('a, 'b) t -> f:(key:'a key -> data:'b -> 'b option) -> unit
val equal : ('b -> 'b -> bool) -> ('a, 'b) t -> ('a, 'b) t -> bool

equal f t1 t2 and similar f t1 t2 both return true iff t1 and t2 have the same keys and for all keys k, f (find_exn t1 k) (find_exn t2 k). equal and similar only differ in their types.

val similar : ('b1 -> 'b2 -> bool) -> ('a, 'b1) t -> ('a, 'b2) t -> bool
val to_alist : ('a, 'b) t -> ('a key * 'b) list

Returns the list of all (key, data) pairs for given hashtable.

val incr : ?by:int -> ?remove_if_zero:bool -> ('a, int) t -> 'a key -> unit

remove_if_zero's default is false.

val decr : ?by:int -> ?remove_if_zero:bool -> ('a, int) t -> 'a key -> unit
val add_multi : ('a, 'b list) t -> key:'a key -> data:'b -> unit

add_multi t ~key ~data if key is present in the table then cons data on the list, otherwise add key with a single element list.

val remove_multi : ('a, _ list) t -> 'a key -> unit

remove_multi t key updates the table, removing the head of the list bound to key. If the list has only one element (or is empty) then the binding is removed.

val find_multi : ('a, 'b list) t -> 'a key -> 'b list

find_multi t key returns the empty list if key is not present in the table, returns t's values for key otherwise.

val hashable_s : ('key, _) t -> 'key Key.t
include Invariant.S2 with type ('a, 'b) t := ('a, 'b) t
val invariant : ('a -> unit) -> ('b -> unit) -> ('a, 'b) t -> unit
module type Accessors = sig ... end
module type Creators = sig ... end
module type Multi = sig ... end
module type S_poly = sig ... end
module type S_without_submodules = sig ... end
module type For_deriving = sig ... end
module Key : sig ... end
module Merge_into_action = Dictionary_mutable.Merge_into_action
type nonrec ('key, 'data, 'z) create_options = ?growth_allowed:bool -> ?size:int -> 'key Key.t -> 'z
module Creators (Key : sig ... end) : sig ... end
module Poly : S_poly with type ('a, 'b) t = ('a, 'b) t
module M (K : T.T) : sig ... end

M is meant to be used in combination with OCaml applicative functor types:

include For_deriving with type ('a, 'b) t := ('a, 'b) t
module type Sexp_of_m = sig ... end
module type M_of_sexp = sig ... end
module type M_sexp_grammar = sig ... end
module type Equal_m = sig ... end
val sexp_of_m__t : (module Sexp_of_m with type t = 'k) -> ('v -> Sexp.t) -> ('k, 'v) t -> Sexp.t
val m__t_of_sexp : (module M_of_sexp with type t = 'k) -> (Sexp.t -> 'v) -> Sexp.t -> ('k, 'v) t
val m__t_sexp_grammar : (module M_sexp_grammar with type t = 'k) -> 'v Sexplib0.Sexp_grammar.t -> ('k, 'v) t Sexplib0.Sexp_grammar.t
val equal_m__t : (module Equal_m) -> ('v -> 'v -> bool) -> ('k, 'v) t -> ('k, 'v) t -> bool
OCaml

Innovation. Community. Security.