package OCADml

  1. Overview
  2. Docs

Source file v3.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
type t = V.v3

type line =
  { a : t
  ; b : t
  }

let[@inline] v x y z = Gg.V3.v x y z
let[@inline] x t = Gg.V3.x t
let[@inline] y t = Gg.V3.y t
let[@inline] z t = Gg.V3.z t
let zero = v 0. 0. 0.
let[@inline] of_tup tup = Gg.V3.of_tuple tup
let[@inline] to_tup t = Gg.V3.to_tuple t
let[@inline] horizontal_op op a b = v (op (x a) (x b)) (op (y a) (y b)) (op (z a) (z b))
let[@inline] add a b = Gg.V3.add a b
let[@inline] sub a b = Gg.V3.sub a b
let[@inline] mul a b = Gg.V3.mul a b
let[@inline] div a b = Gg.V3.div a b
let[@inline] neg t = Gg.V3.neg t
let[@inline] sadd t s = v (x t +. s) (y t +. s) (z t +. s)
let[@inline] ssub t s = v (x t -. s) (y t -. s) (z t -. s)
let[@inline] smul t s = Gg.V3.smul s t
let[@inline] sdiv t s = v (x t /. s) (y t /. s) (z t /. s)
let[@inline] map f t = Gg.V3.map f t

let equal a b =
  Float.equal (x a) (x b) && Float.equal (y a) (y b) && Float.equal (z a) (z b)

let compare a b =
  let x = Float.compare (x a) (x b) in
  if x = 0
  then (
    let y = Float.compare (y a) (y b) in
    if y = 0 then Float.compare (z a) (z b) else y )
  else x

let norm t =
  let x = x t
  and y = y t
  and z = z t in
  Float.sqrt ((x *. x) +. (y *. y) +. (z *. z))

let distance a b = norm (sub a b)

let approx ?(eps = Util.epsilon) a b =
  not (Int.equal Float.(compare (distance a b) eps) 1)

let[@inline] abs t = map Float.abs t

let normalize t =
  let n = norm t in
  if n > 0. then sdiv t n else t

let[@inline] dot a b = Gg.V3.dot a b

let cross a b =
  let x = (y a *. z b) -. (z a *. y b)
  and y = (z a *. x b) -. (x a *. z b)
  and z = (x a *. y b) -. (y a *. x b) in
  v x y z

let mid a b = v ((x a +. x b) /. 2.) ((y a +. y b) /. 2.) ((z a +. z b) /. 2.)

let mean l =
  let n, sum = List.fold_left (fun (i, s) t -> i + 1, add t s) (0, zero) l in
  sdiv sum (Int.to_float n)

let mean' a =
  let sum = ref zero
  and len = Array.length a in
  for i = 0 to len - 1 do
    sum := add !sum a.(i)
  done;
  sdiv !sum (Int.to_float len)

let lerp a b u =
  if u = 0. then a else if u = 1. then b else add (smul a (1. -. u)) (smul b u)

let lerpn ?(endpoint = true) a b n =
  let d = Float.of_int @@ if endpoint then Int.max 1 (n - 1) else n in
  List.init n (fun i ->
      let u = Float.of_int i /. d in
      lerp a b u )

let angle a b = Float.acos (Math.clamp ~min:(-1.) ~max:1. (dot a b /. (norm a *. norm b)))
let angle_points a b c = angle (sub a b) (sub c b)
let ccw_theta t = Float.atan2 (y t) (x t)

let lower_bounds a b =
  v (Float.min (x a) (x b)) (Float.min (y a) (y b)) (Float.min (z a) (z b))

let upper_bounds a b =
  v (Float.max (x a) (x b)) (Float.max (y a) (y b)) (Float.max (z a) (z b))

let clockwise_sign ?(eps = Util.epsilon) a b c =
  let ba = sub b a
  and cb = sub c b in
  let crx_z = z @@ cross ba cb in
  if Float.abs crx_z <= eps *. norm ba *. norm cb then 0. else Math.sign crx_z

let collinear p1 p2 p3 =
  let a = distance p1 p2
  and b = distance p2 p3
  and c = distance p3 p1 in
  a +. b < c || b +. c < a || c +. a < b

let vector_axis a b =
  let eps = 1e-6
  and a = normalize a
  and b = normalize b in
  let c =
    if norm (sub a b) > eps && norm (add a b) > eps
    then b
    else if norm (abs b) > eps
    then v 0. 0. 1.
    else v 1. 0. 0.
  in
  normalize (cross a c)

let distance_to_vector p v = norm (sub p (smul v (dot p v)))

let closest_simplex1 ?(eps = Util.epsilon) p1 p2 =
  if norm (sub p2 p1) <= eps *. (norm p1 +. norm p2) /. 2.
  then p1, [ p1 ]
  else (
    let c = sub p2 p1 in
    let t = -1. *. dot p1 c /. dot c c in
    if t < 0.
    then p1, [ p1 ]
    else if t > 1.
    then p2, [ p2 ]
    else add p1 (smul c t), [ p1; p2 ] )

let line_closest_point ?(bounds = false, false) ~line t =
  match bounds with
  | false, false ->
    let n = normalize (sub line.a line.b) in
    add line.b (smul n (dot (sub t line.b) n))
  | true, true -> add t (fst @@ closest_simplex1 (sub line.a t) (sub line.b t))
  | b1, b2 ->
    let line = if b1 && not b2 then line else { a = line.b; b = line.a } in
    let seg_vec = normalize (sub line.b line.a) in
    let projection = dot (sub t line.a) seg_vec in
    if projection <= 0. then line.a else add line.a (smul seg_vec projection)

let distance_to_line ?(bounds = false, false) ~line t =
  match bounds with
  | false, false -> distance_to_vector (sub t line.a) (normalize (sub line.b line.a))
  | bounds -> norm (sub t (line_closest_point ~bounds ~line t))

let point_on_line ?(eps = Util.epsilon) ?bounds ~line t =
  distance_to_line ?bounds ~line t < eps

let to_string t = Printf.sprintf "[%f, %f, %f]" (x t) (y t) (z t)
let deg_of_rad t = map (fun r -> 180.0 *. r /. Float.pi) t
let rad_of_deg t = map (fun d -> d *. Float.pi /. 180.) t
let[@inline] ( +@ ) a b = add a b
let[@inline] ( -@ ) a b = sub a b
let[@inline] ( *@ ) a b = mul a b
let[@inline] ( /@ ) a b = div a b
let[@inline] ( +$ ) a b = sadd a b
let[@inline] ( -$ ) a b = ssub a b
let[@inline] ( *$ ) a b = smul a b
let[@inline] ( /$ ) a b = sdiv a b
let[@inline] to_v2 t = Gg.V2.v (x t) (y t)
let[@inline] of_v2 ?(z = 0.) p = v (Gg.V2.x p) (Gg.V2.y p) z

let xrot ?about theta t =
  let rot t =
    let y = y t
    and z = z t in
    let s = Float.sin theta
    and c = Float.cos theta in
    let y' = (y *. c) -. (z *. s)
    and z' = (z *. c) +. (y *. s) in
    v (x t) y' z'
  in
  match about with
  | Some p -> sub t p |> rot |> add p
  | None -> rot t

let yrot ?about theta t =
  let rot t =
    let x = x t
    and z = z t in
    let s = Float.sin theta
    and c = Float.cos theta in
    let x' = (x *. c) +. (z *. s)
    and z' = (z *. c) -. (x *. s) in
    v x' (y t) z'
  in
  match about with
  | Some p -> sub t p |> rot |> add p
  | None -> rot t

let zrot ?about theta t =
  let rot t =
    let x = x t
    and y = y t in
    let s = Float.sin theta
    and c = Float.cos theta in
    let x' = (x *. c) -. (y *. s)
    and y' = (y *. c) +. (x *. s) in
    v x' y' (z t)
  in
  match about with
  | Some p -> sub t p |> rot |> add p
  | None -> rot t

let rotate ?about r t =
  match about with
  | Some p -> sub t p |> xrot (x r) |> yrot (y r) |> zrot (z r) |> add p
  | None -> xrot (x r) t |> yrot (y r) |> zrot (z r)

let[@inline] translate a b = add a b
let[@inline] xtrans d t = v (x t +. d) (y t) (z t)
let[@inline] ytrans d t = v (x t) (y t +. d) (z t)
let[@inline] ztrans d t = v (x t) (y t) (z t +. d)
let[@inline] scale a b = mul a b
let[@inline] xscale s t = v (x t *. s) (y t) (z t)
let[@inline] yscale s t = v (x t) (y t *. s) (z t)
let[@inline] zscale s t = v (x t) (y t) (z t *. s)
let mirror ax t = sub t (smul ax (2. *. (dot t ax /. dot ax ax)))
let projection t = v (x t) (y t) 0.
OCaml

Innovation. Community. Security.