package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-octez-v20.1.tag.bz2
sha256=ddfb5076eeb0b32ac21c1eed44e8fc86a6743ef18ab23fff02d36e365bb73d61
sha512=d22a827df5146e0aa274df48bc2150b098177ff7e5eab52c6109e867eb0a1f0ec63e6bfbb0e3645a6c2112de3877c91a17df32ccbff301891ce4ba630c997a65
doc/src/octez-libs.aplonk/main_protocol.ml.html
Source file main_protocol.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
(*****************************************************************************) (* *) (* MIT License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) (* This file implements the aPlonK protocol, designed to produce multiple PlonK proofs at the same time, which can be verified in logarithmic time. In addition to using a multi-polynomial commitment scheme, aPlonK delegates part of verification checks on scalar values to the prover, who will produce a PlonK proof that the checks pass correctly. *) open Kzg.Bls module SMap = Kzg.SMap module Make_impl (Main_KZG : Plonk.Main_protocol.S with type public_inputs = Scalar.t array list) (Main_Pack : Aggregation.Main_protocol.S with type public_inputs = Scalar.t array list with module PP.Answers_commitment = Main_KZG.Input_commitment) (PIs : Pi_parameters.S) = struct module Aggreg_circuit = Circuit.V (Main_Pack) module L = Plompiler.LibCircuit exception Entry_not_in_table of string exception Rest_not_null of string module Input_commitment = Main_Pack.Input_commitment type scalar = Scalar.t [@@deriving repr] type circuit_map = Main_Pack.circuit_map (* Type of prover public params for meta-verification of a base circuit: - meta_pp : meta-verification prover PP of this base circuit - meta_solver : Plompiler solver for this meta-verification circuit - public_input_size : number of public inputs in this base circuit - input_com_sizes : number of input commitment sizes expected by this base circuit - nb_proofs : maximum number of proofs that will be created on this base circuit - nb_rc_wires : number of range-checked wires *) type prover_meta_pp = { meta_pp : Main_KZG.prover_public_parameters; meta_solver : Plompiler.Solver.t; public_input_size : int; input_com_sizes : int list; nb_proofs : int; nb_rc_wires : int; } [@@deriving repr] (* Type of verifier public params for meta-verification of a base circuit: - meta_pp : meta-verification verifier PP of this base circuit - public_input_size : number of public inputs in this base circuit *) type verifier_meta_pp = { meta_pp : Main_KZG.verifier_public_parameters; public_input_size : int; nb_proofs : int; } [@@deriving repr] (* Type of prover public parameters of aPlonK: - main_pp : main_protocol (prover) public parameters of the aPlonK aggregated statement - meta_pps : [prover_meta_pp] for meta-verification of all the supported base circuits, encoded as a string map keyed by the base circuit names *) type prover_public_parameters = { main_pp : Main_Pack.prover_public_parameters; meta_pps : prover_meta_pp SMap.t; } [@@deriving repr] (* Type of verifier public parameters of aPlonK: - main_pp : main_protocol (verifier) public parameters of the aPlonK aggregated statement - meta_pps : [verifier_meta_pp] for meta-verification of all the supported base circuits, encoded as a string map keyed by the base circuit names *) type verifier_public_parameters = { main_pp : Main_Pack.verifier_public_parameters; meta_pps : verifier_meta_pp SMap.t; } [@@deriving repr] (* Type of an aggregated aPlonK proof: - main_proof : proof of the aggregated aPlonK statement - meta_proofs : meta-verification proofs for each base circuit, encoded as a string map keyed by the base circuit names - batch : COULD BE REMOVED AND RECOMPUTED FROM [batches] - batches : aggregated evaluation values for each of the base circuits in the catalog; its structure is as follows: * we have one "batch" (of type [(scalar * int) SMap.t list]) per base circuit, stored in a string map keyed by the base circuit names * each "batch" is a list of [(scalar * int) SMap.t], corresponding to the groups of polynomials committed during the PlonK protocol; currently this list includes four groups of polynomials: - setup-polynomials, - perm-and-plook polynomials - wire-polynomials in that order (although aPlonK is order-agnostic, as long as the order is consistent with [cms_answers]). IMPORTANT: t-polynomials are handeled separately, explicitly in the multi-aPlonK protocol * each [(scalar * int) SMap.t] is a map containing the batched evaluation of all the polynomials in the group at the point represented by the map key (typically "X" and "GX"); the [int] indicates the number of polynomials that were batch - cms_answers : commitments to the PlonK polynomial evaluations (a.k.a. "answers"), one commitment per base circuit, presented in a string map keyed by the base circuit names; each commitment includes the evaluations that were "batched" in [batches] - cms_pi : commitments to the public inputs of each base circuit, presented in a string map keyed by the base circuit names - ids_batch : a map from circuit names to pairs [scalar * int], the [scalar] is the value corresponding to the batched identities of that circuit, whereas the [int] indicates how many identities were batched. - t_answers : evaluations of polynomial [T] at [x]; this type is a list of scalars given that [T] may be split into several parts. *) type proof = { main_proof : Main_Pack.proof; meta_proofs : Main_KZG.proof SMap.t; batch : Main_KZG.scalar SMap.t list; batches : (Main_KZG.scalar * int) SMap.t list SMap.t; cms_answers : Main_Pack.PP.Answers_commitment.public SMap.t; cms_pi : Main_Pack.PP.Answers_commitment.public SMap.t; ids_batch : (Main_KZG.scalar * int) SMap.t; t_answers : Main_KZG.scalar list; } [@@deriving repr] type circuit_prover_input = Main_Pack.circuit_prover_input = { witness : scalar array; input_commitments : Main_Pack.Input_commitment.t list; } [@@deriving repr] type prover_inputs = circuit_prover_input list SMap.t [@@deriving repr] type public_inputs = scalar list [@@deriving repr] type circuit_verifier_input = { nb_proofs : int; public : public_inputs; commitments : Input_commitment.public list list; } [@@deriving repr] type verifier_inputs = circuit_verifier_input SMap.t [@@deriving repr] let to_verifier_inputs (pp : prover_public_parameters) inputs = let vi = Main_Pack.to_verifier_inputs pp.main_pp inputs in SMap.mapi (fun circuit_name Main_Pack.{nb_proofs; public; commitments} -> let module PI = (val PIs.get_pi_module circuit_name) in let public = PI.outer_of_inner (List.map Array.to_list public) in assert (List.for_all (fun i -> i = []) commitments) ; {nb_proofs; public; commitments}) vi (* We only need to modify the main circuit PP, since it rules them all (meta-circuits get their state updated after the main circuit proof) *) let update_prover_public_parameters repr x (pp : prover_public_parameters) = { pp with main_pp = Main_Pack.update_prover_public_parameters repr x pp.main_pp; } (* We only need to modify the main circuit PP, since it rules them all (meta-circuits get their state updated after the main circuit proof) *) let update_verifier_public_parameters repr x (pp : verifier_public_parameters) = { pp with main_pp = Main_Pack.update_verifier_public_parameters repr x pp.main_pp; } let filter_prv_pp_circuits (pp : prover_public_parameters) inputs = {pp with main_pp = Main_Pack.filter_prv_pp_circuits pp.main_pp inputs} let filter_vrf_pp_circuits pp inputs = {pp with main_pp = Main_Pack.filter_vrf_pp_circuits pp.main_pp inputs} (* used for debug with sat *) let cs_global = ref SMap.empty (* ////////////////////////////////////////////////////// *) let input_commit_funcs (pp : prover_public_parameters) inputs = SMap.mapi (fun name pp -> let nb_proofs = List.length (SMap.find name inputs) in (* meta-verification circuits have exactly 2 input commitments: one for the PI and one for the answers (in that order) *) let nb_max_pi = List.hd pp.input_com_sizes in Main_Pack. { pi = (fun pi -> Main_KZG.input_commit ~size:nb_max_pi pp.meta_pp pi); answers = (fun answers -> let answers = Aggreg_circuit.pad_answers pp.nb_proofs pp.nb_rc_wires nb_proofs answers in Main_KZG.input_commit ~shift:nb_max_pi pp.meta_pp (Array.of_list answers)); }) pp.meta_pps (* ////////////////////////////////////////////////////// *) let input_commit ?size ?shift (pp : prover_public_parameters) secret = ignore (size, shift, pp, secret) ; failwith "[input_commit] in aPlonK is not supported yet" let meta_setup ~zero_knowledge ~srs ~main_prover_pp ~nb_batches circuit_name (circuit, nb_proofs) = let module PI = (val PIs.get_pi_module circuit_name) in let cs = Aggreg_circuit.get_cs_verification main_prover_pp circuit nb_batches nb_proofs PI.(nb_outer, nb_inner) PI.check in (* cs_global is used for sat *) cs_global := SMap.add circuit_name cs !cs_global ; (* Plompiler.Utils.dump_label_traces ("../../../../flamegraph/flamegraph" ^ "_" ^ Int.to_string nb_proofs) cs.cs; *) let public_input_size = cs.public_input_size in let input_com_sizes = cs.input_com_sizes in let circuit_aggreg = Plonk.Circuit.to_plonk cs in let agg_circuit_map = SMap.singleton ("meta_" ^ circuit_name) (circuit_aggreg, 1) in let prover_meta_pp, verifier_meta_pp = Main_KZG.setup ~zero_knowledge agg_circuit_map ~srs in let prover_meta_pp = { meta_pp = prover_meta_pp; meta_solver = cs.solver; public_input_size; input_com_sizes; nb_proofs; nb_rc_wires = SMap.cardinal circuit.range_checks; } in let verifier_meta_pp = {meta_pp = verifier_meta_pp; public_input_size; nb_proofs} in (prover_meta_pp, verifier_meta_pp) let setup ~zero_knowledge circuits_map ~srs = let prover_pp, verifier_pp = Main_Pack.setup ~zero_knowledge circuits_map ~srs in (* nb_batches gives the maximum number of batch of all circuits ; the number of batches has to be the same for all verification circuit *) let nb_batches = SMap.fold (fun _ (c, _) nb_batches -> max nb_batches (Aggreg_circuit.nb_batches c)) circuits_map 0 in let meta_pps = SMap.mapi (meta_setup ~zero_knowledge ~srs ~main_prover_pp:prover_pp ~nb_batches) circuits_map in let prover_meta_pps = SMap.map fst meta_pps in let verifier_meta_pps = SMap.map snd meta_pps in ( ({main_pp = prover_pp; meta_pps = prover_meta_pps} : prover_public_parameters), {main_pp = verifier_pp; meta_pps = verifier_meta_pps} ) let meta_prove ~(main_prover_aux : Main_Pack.prover_aux) ~meta_pps ~inner_pi_map ~transcript batches circuit_name circuit_inputs = let module PI = (val PIs.get_pi_module circuit_name) in let prover_meta_pp : prover_meta_pp = SMap.find circuit_name meta_pps in let batch = SMap.find circuit_name batches in let cm_pi = SMap.find circuit_name main_prover_aux.cms_pi in let cm_answers = SMap.find circuit_name main_prover_aux.cms_answers in let switches, compressed_switches = let nb_proofs = List.length circuit_inputs in Aggreg_circuit.compute_switches prover_meta_pp.nb_proofs nb_proofs in let inner_pi = let Main_Pack.{public; _} = SMap.find circuit_name inner_pi_map in List.map Array.to_list public in let trace = let outer_pi = PI.outer_of_inner inner_pi in Aggreg_circuit.get_witness prover_meta_pp.nb_proofs prover_meta_pp.nb_rc_wires main_prover_aux circuit_name prover_meta_pp.public_input_size prover_meta_pp.meta_solver (inner_pi, outer_pi) switches compressed_switches batch in let secret = Main_KZG.{witness = trace; input_commitments = [cm_pi; cm_answers]} in let cs = SMap.find circuit_name !cs_global in assert (Plonk.Circuit.sat cs trace) ; let inputs = SMap.singleton ("meta_" ^ circuit_name) [secret] in let pp_aggreg_circuit = Main_KZG.update_prover_public_parameters Kzg.Utils.Transcript.t transcript prover_meta_pp.meta_pp in try Main_KZG.prove pp_aggreg_circuit ~inputs with Main_KZG.Rest_not_null _ -> raise (Rest_not_null "Main_Kzg.prove could not create a proof for the verification \ circuit.") let meta_proof (pp : prover_public_parameters) inputs (main_proof, (prover_aux : Main_Pack.prover_aux)) = let open Main_Pack in let transcript = Kzg.Utils.Transcript.(expand proof_t main_proof empty) in let inner_pi_map = to_verifier_inputs pp.main_pp inputs in let batches = Aggreg_circuit.get_batches inputs prover_aux.answers prover_aux.r in let meta_proofs = SMap.mapi (meta_prove ~main_prover_aux:prover_aux ~meta_pps:pp.meta_pps ~inner_pi_map ~transcript batches) inputs in let cms_answers = SMap.map Main_Pack.PP.Answers_commitment.(fun cm_answers -> cm_answers.public) prover_aux.cms_answers in let cms_pi = SMap.map Main_Pack.PP.Answers_commitment.(fun cm_pi -> cm_pi.public) prover_aux.cms_pi in { main_proof; meta_proofs; batch = prover_aux.batch; batches; cms_answers; cms_pi; t_answers = prover_aux.t_answers; ids_batch = prover_aux.ids_batch; } let prove (pp : prover_public_parameters) ~(inputs : prover_inputs) = let pp = filter_prv_pp_circuits pp inputs in let input_commit_funcs = input_commit_funcs pp inputs in let proof_base_circuits = try Main_Pack.prove_list pp.main_pp ~input_commit_funcs ~inputs with Main_Pack.Rest_not_null _ -> raise (Rest_not_null "Main_Pack.prove could not create a proof for the base circuit.") in meta_proof pp inputs proof_base_circuits let meta_verify ~transcript ~inputs ~proof alpha_et_al circuit_name pp = let cm_answers = SMap.find circuit_name proof.cms_answers in let cm_pi = SMap.find circuit_name proof.cms_pi in let meta_proof = SMap.find circuit_name proof.meta_proofs in let batch = SMap.find circuit_name proof.batches in let ids_batch = SMap.find circuit_name proof.ids_batch |> fst in let input = SMap.find circuit_name inputs in if List.exists (fun l -> l <> []) input.commitments then raise @@ Invalid_argument "input commitments in the base circuit of\n\ \ aPlonK are not yet supported" ; let public_inputs = Aggreg_circuit.aggreg_public_inputs pp.public_input_size alpha_et_al batch ids_batch (Scalar.of_int input.nb_proofs) input.public in let pp_aggreg_circuit = Main_KZG.update_verifier_public_parameters Kzg.Utils.Transcript.t transcript pp.meta_pp in let inputs = SMap.singleton ("meta_" ^ circuit_name) Main_KZG. { nb_proofs = 1; public = [public_inputs]; commitments = [[cm_pi; cm_answers]]; } in Main_KZG.verify pp_aggreg_circuit ~inputs meta_proof let verify pp ~(inputs : verifier_inputs) proof = let pp = filter_vrf_pp_circuits pp inputs in let main_verif, main_verifier_aux = Main_Pack.verify_list pp.main_pp ( proof.main_proof, proof.batch, proof.cms_answers, proof.cms_pi, proof.t_answers, proof.ids_batch ) in let transcript = Kzg.Utils.Transcript.(expand Main_Pack.proof_t proof.main_proof empty) in let batch_ok = Aggreg_circuit.verify_batch main_verifier_aux.r proof.batch proof.batches proof.t_answers in let meta_proofs_ok = let v = main_verifier_aux in SMap.for_all (meta_verify ~transcript ~inputs ~proof (v.alpha, v.beta, v.gamma, v.delta, v.x, v.r)) pp.meta_pps in main_verif && batch_ok && meta_proofs_ok (* Encodings *) let scalar_encoding = Main_Pack.scalar_encoding let data_encoding_of_repr repr = Data_encoding.conv (Plompiler.Utils.to_bytes repr) (Plompiler.Utils.of_bytes repr) Data_encoding.bytes let proof_encoding = data_encoding_of_repr proof_t let verifier_public_parameters_encoding = data_encoding_of_repr verifier_public_parameters_t module Internal_for_tests = struct let mutate_vi verifier_inputs = let key, {nb_proofs; public; commitments} = SMap.choose verifier_inputs in match public with | [] -> None | input -> let input = Array.of_list input in let i = Random.int (Array.length input) in input.(i) <- Scalar.random () ; Some (SMap.add key {nb_proofs; public = Array.to_list input; commitments} verifier_inputs) end end (* Main_KZG is used on the meta-verification circuit *) module Main_KZG = Plonk.Main_protocol module Super_PP = Aggregation.Polynomial_protocol.Make_aggregation (Aggregation.Polynomial_commitment) (Main_KZG.Input_commitment) (* Main_Pack is used for the base circuits that we are proving; it is built with the super aggregation *) module Main_Pack = Aggregation.Main_protocol.Make (Super_PP) module Make_raw (Main_KZG : Plonk.Main_protocol.S with type public_inputs = Scalar.t array list) (Main_Pack : Aggregation.Main_protocol.S with type public_inputs = Scalar.t array list with module PP.Answers_commitment = Main_KZG.Input_commitment) (PIs : Pi_parameters.S) : Plonk.Main_protocol.S with module Input_commitment = Main_Pack.Input_commitment with type circuit_prover_input = Main_Pack.circuit_prover_input with type public_inputs = Scalar.t list = Make_impl (Main_KZG) (Main_Pack) (PIs) module Make (PIs : Pi_parameters.S) = Make_raw (Main_KZG) (Main_Pack) (PIs)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>