package decompress
Implementation of Zlib and GZip in OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
decompress-1.5.3.tbz
sha256=f91e6978beff3fcb61440d32f7c99c99f1e8654b4fb18408741d36035373ac60
sha512=c3f402404f76075e6f692ea36e701134a5d833824d5d1166365c6c81fb18b309270bf288ce4c118ac44fd0366d9b6eea0a6309255678d8e1bd2bbfa7ba843461
doc/src/decompress.lzo/lzo.ml.html
Source file lzo.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
type bigstring = (char, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t type error = [ `Malformed of string | `Invalid_argument of string | `Invalid_dictionary ] let pf = Format.fprintf let pp_error ppf = function | `Malformed err -> pf ppf "%s" err | `Invalid_argument err -> pf ppf "%s" err | `Invalid_dictionary -> pf ppf "Invalid dictionary" let bigstring_length x = Bigarray.Array1.dim x [@@inline] let bigstring_create l = Bigarray.Array1.create Bigarray.char Bigarray.c_layout l let bigstring_sub buf off len = Bigarray.Array1.sub buf off len let bigstring_empty = bigstring_create 0 (* XXX(dinosaure): we want to control which exception is raised if we want to have a bad access. In this case, [Out_of_bound]. *) exception Out_of_bound external unsafe_get_char : bigstring -> int -> char = "%caml_ba_ref_1" let get_char buf ofs = if ofs < 0 || ofs > bigstring_length buf - 1 then raise Out_of_bound ; unsafe_get_char buf ofs external unsafe_get_int16 : bigstring -> int -> int = "%caml_bigstring_get16u" external unsafe_get_int8 : bigstring -> int -> int = "%caml_ba_ref_1" let get_int8 buf ofs = if ofs < 0 || ofs > bigstring_length buf - 1 then raise Out_of_bound ; unsafe_get_int8 buf ofs external unsafe_set_int8 : bigstring -> int -> int -> unit = "%caml_ba_set_1" let set_int8 buf ofs x = if ofs < 0 || ofs > bigstring_length buf - 1 then raise Out_of_bound ; unsafe_set_int8 buf ofs x external unsafe_get_int32 : bigstring -> int -> int32 = "%caml_bigstring_get32" external unsafe_get_int64 : bigstring -> int -> int64 = "%caml_bigstring_get64" let get_int32 buf ofs = if ofs < 0 || ofs > bigstring_length buf - 4 then raise Out_of_bound ; unsafe_get_int32 buf ofs let get_int64 buf ofs = if ofs < 0 || ofs > bigstring_length buf - 8 then raise Out_of_bound ; unsafe_get_int64 buf ofs external unsafe_set_int32 : bigstring -> int -> int32 -> unit = "%caml_bigstring_set32" external swap16 : int -> int = "%bswap16" external swap32 : int32 -> int32 = "caml_int32_bswap" external swap64 : int64 -> int64 = "caml_int64_bswap" (* XXX(dinosaure): assume that LZO does need [memcpy] behaviour. *) let unsafe_blit src src_off dst dst_off len = let len0 = len land 3 in let len1 = len asr 2 in for i = 0 to len1 - 1 do let i = i * 4 in let v = unsafe_get_int32 src (src_off + i) in unsafe_set_int32 dst (dst_off + i) v done ; for i = 0 to len0 - 1 do let i = (len1 * 4) + i in let v = unsafe_get_int8 src (src_off + i) in unsafe_set_int8 dst (dst_off + i) v done let blit src src_off dst dst_off len = if len < 0 || src_off < 0 || src_off > bigstring_length src - len || dst_off < 0 || dst_off > bigstring_length dst - len then raise Out_of_bound ; unsafe_blit src src_off dst dst_off len external bytes_unsafe_set_int32 : bytes -> int -> int32 -> unit = "%caml_bytes_set32" let bytes_unsafe_set_int8 buf off chr = Bytes.set buf off (Char.unsafe_chr chr) let unsafe_bigstring_to_string buf ofs len = let res = Bytes.create len in let len0 = len land 3 in let len1 = len asr 2 in for i = 0 to len1 - 1 do let i = i * 4 in let v = unsafe_get_int32 buf (ofs + i) in bytes_unsafe_set_int32 res i v done ; for i = 0 to len0 - 1 do let i = (len1 * 4) + i in let v = unsafe_get_int8 buf (ofs + i) in bytes_unsafe_set_int8 res i v done ; Bytes.unsafe_to_string res let bigstring_to_string buf ofs len = if ofs < 0 || len < 0 || ofs > bigstring_length buf - len then raise Out_of_bound ; unsafe_bigstring_to_string buf ofs len let unsafe_get_int16_le = if Sys.big_endian then fun buf off -> swap16 (unsafe_get_int16 buf off) else fun buf off -> unsafe_get_int16 buf off let unsafe_get_int16_be = if Sys.big_endian then fun buf off -> unsafe_get_int16 buf off else fun buf off -> swap16 (unsafe_get_int16 buf off) let unsafe_get_int16 buf ofs = function | `LE -> unsafe_get_int16_le buf ofs | `BE -> unsafe_get_int16_be buf ofs let get_int16 buf ofs endian = if ofs < 0 || ofs > bigstring_length buf - 2 then raise Out_of_bound ; unsafe_get_int16 buf ofs endian let get_int32_le = if Sys.big_endian then fun buf off -> swap32 (get_int32 buf off) else fun buf off -> get_int32 buf off let get_int64_le = if Sys.big_endian then fun buf off -> swap64 (get_int64 buf off) else fun buf off -> get_int64 buf off let kstrf k fmt = Format.kasprintf k fmt type sub = {off: int; len: int} module State : sig type t = private int val of_int : int -> t val _0 : t val _3 : t val _no_extra : t end = struct type t = int let of_int x = x let _0 = 0 let _3 = 3 let _no_extra = -1 end type ('a, 'error) t = | Return : 'a -> ('a, 'error) t | Bind : ('a, 'error) t * ('a -> ('b, 'error) t) -> ('b, 'error) t | State : (state, 'error) t | Transmit : int * state -> (unit, 'error) t | Count : (int, 'error) t | Copy : sub * state -> (unit, 'error) t | Fail : 'error -> ('a, 'error) t | Peek : 'a value -> ('a, 'error) t | Junk : 'a value -> (unit, 'error) t | Fix : (('a, 'error) t -> ('a, 'error) t) -> ('a, 'error) t | Lazy : ('a, 'error) t Lazy.t -> ('a, 'error) t and 'a value = Byte : char value | Short : [ `LE | `BE ] -> int value and state = State.t type v = { i: bigstring ; mutable i_pos: int ; mutable o: bigstring ; mutable o_pos: int ; mutable state: State.t } let transmit v len = blit v.i v.i_pos v.o v.o_pos len ; v.i_pos <- v.i_pos + len ; v.o_pos <- v.o_pos + len ; Ok () let copy v ~off ~len = blit v.o (v.o_pos - off) v.o v.o_pos len ; v.o_pos <- v.o_pos + len ; Ok () let transmit_to_buffer buf v len = let res = bigstring_to_string v.i v.i_pos len in Buffer.add_string buf res ; v.i_pos <- v.i_pos + len ; v.o_pos <- v.o_pos + len ; Ok () let copy_to_buffer buf _v ~off ~len = let rec go off len = if len = 0 then Ok () else let pos = Buffer.length buf - off in let rem = Buffer.length buf - pos in let cpy = min rem len in let res = Buffer.sub buf pos cpy in Buffer.add_string buf res ; go (off + cpy) (len - cpy) in if Buffer.length buf >= off then go off len else Error `Invalid_dictionary let count t = let res = ref 0 in let idx = ref t.i_pos in let max = bigstring_length t.i in while (not (!idx > max - 4)) && get_int32_le t.i !idx = 0l do idx := !idx + 4 ; res := !res + 4 done ; while !idx + 1 <= max && get_int8 t.i !idx = 0 do incr idx ; incr res done ; if !idx < max then ( t.i_pos <- !idx + 1 ; Ok ((!res * 255) + get_int8 t.i !idx)) else Error (`Malformed "Invalid input") type ('a, 'b) k = Ok of 'a | Error of 'b let ( >>= ) : ('a, 'err) result -> ('a -> ('b, 'err) result) -> ('b, 'err) result = fun x f -> match x with Ok x -> f x | Error err -> Error err let copy_done ~transmit t = let state = (t.state :> int) in transmit t (state land 3) let run : transmit:(v -> int -> (unit, 'error) result) -> copy:(v -> off:int -> len:int -> (unit, 'error) result) -> ('a, 'error) t -> v -> ('a, 'error) result = fun ~transmit ~copy fiber t -> let rec go : type a. v -> (a, ([> `Malformed of string ] as 'error)) t -> (a, 'error) k = fun t instr -> match instr with | Fail err -> Error err | Return v -> Ok v | Bind (x, f) -> ( match go t x with Ok v -> go t (f v) | Error _ as err -> err) | Fix fix -> (* XXX(dinosaure): [Kontinuation] exists to break the stack-overflow with [js_of_ocaml] but it was not implemented yet. *) let rec m = lazy (fix r) and r = Lazy m in go t r | Lazy m -> go t (Lazy.force m) | State -> Ok t.state | _ when t.i_pos >= bigstring_length t.i -> Error (`Malformed "Unexpected end of input") | Peek Byte -> Ok (get_char t.i t.i_pos) | Junk Byte -> if t.i_pos < bigstring_length t.i then ( t.i_pos <- t.i_pos + 1 ; Ok ()) else raise Out_of_bound | Peek (Short endian) -> Ok (get_int16 t.i t.i_pos endian) | Junk (Short _) -> if t.i_pos + 1 < bigstring_length t.i then ( t.i_pos <- t.i_pos + 2 ; Ok ()) else raise Out_of_bound | Count -> ( match count t with Ok v -> Ok v | Error err -> Error err) | Transmit (len, state) -> ( t.state <- state ; match transmit t len with Ok v -> Ok v | Error err -> Error err) | Copy ({off; len}, state) -> ( t.state <- state ; let fiber = copy t ~off ~len:(len + 2) >>= fun () -> copy_done ~transmit t in match fiber with Ok v -> Ok v | Error err -> Error err) in let unroll t fiber : _ result = match go t fiber with Ok v -> Ok v | Error err -> Error err in unroll t fiber module DSL = struct let return x = Return x let ( >>= ) x f = Bind (x, f) let peek v = Peek v let junk v = Junk v let byte = Byte let state = State let transmit ~len state = Transmit (len, state) let count = Count let copy ~off ~len state = Copy ({off; len}, state) let leshort = Short `LE let end_of_lzo = Return () let fix f = Fix f let malformedf fmt = kstrf (fun s -> Fail (`Malformed s)) fmt let read v = peek v >>= fun r -> junk v >>= fun () -> return r end let fiber : (unit, [> error ]) t = let open DSL in fix @@ fun m -> read byte >>= fun chr -> state >>= fun state -> match chr, (state :> int) land 3 with | '\001' .. '\015', 0 -> transmit ~len:(Char.code chr + 3) State._no_extra >>= fun () -> m | '\000', 0 -> count >>= fun count -> let len = 3 + 15 + count in transmit ~len State._no_extra >>= fun () -> m | '\000' .. '\015', (1 | 2 | 3) -> let d, state = Char.code chr lsr 2, State.of_int (Char.code chr land 0b11) in read byte >>= fun h -> let off = (Char.code h lsl 2) + d + 1 in copy ~off ~len:0 state >>= fun () -> m | '\000' .. '\015', -1 -> read byte >>= fun h -> let state = State.of_int (Char.code chr land 0b11) in let off = (Char.code h lsl 2) + (Char.code chr lsr 2) + 2049 in copy ~off ~len:1 state >>= fun () -> m | '\016' .. '\031', _ -> let length = Char.code chr land 0b111 in let with_length len = read leshort >>= fun s -> let off = let h = (Char.code chr land 8) lsr 3 in 16384 + (h lsl 14) + (s lsr 2) in let state = State.of_int (s land 0xff) in if off = 16384 then end_of_lzo else copy ~off ~len state >>= fun () -> m in if length = 0 then count >>= fun count -> with_length (7 + count) else with_length length | '\032' .. '\063', _ -> let with_length len = read leshort >>= fun s -> let state = State.of_int (s land 0xff) in let off = succ (s lsr 2) in copy ~off ~len state >>= fun () -> m in let length = Char.code chr land 0b11111 in if length = 0 then count >>= fun count -> with_length (31 + count) else with_length length | '\064' .. '\255', _ -> let state = State.of_int (Char.code chr) in let len, d = ( (Char.code chr lsr 5) - 1 , (* t = (t >> 5) - 1 *) (Char.code chr lsr 2) land 7 ) (* m_pos = (t >> 2) & 7 *) in read byte >>= fun h -> let off = (Char.code h lsl 3) + d + 1 in copy ~off ~len state >>= fun () -> m | _ -> assert false (* TODO: replace it by something else to ensure exhaustive pattern-matching. *) let fiber : (unit, [> error ]) t = let open DSL in peek byte >>= fun chr -> match chr with | '\016' -> malformedf "No dictionary at offset 0 available" | '\000' .. '\017' -> fiber | '\018' -> junk byte >>= fun () -> transmit ~len:1 State._0 >>= fun () -> fiber | '\019' -> junk byte >>= fun () -> transmit ~len:2 State._0 >>= fun () -> fiber | '\020' -> junk byte >>= fun () -> transmit ~len:3 State._0 >>= fun () -> fiber | '\021' -> junk byte >>= fun () -> transmit ~len:4 State._0 >>= fun () -> fiber | '\022' .. '\255' as chr -> let len = Char.code chr - 17 in junk byte >>= fun () -> transmit ~len State._0 >>= fun () -> fiber let uncompress input output : (bigstring, [> error ]) result = let v = {i= input; i_pos= 0; o= output; o_pos= 0; state= State._0} in match run ~transmit ~copy fiber v with | Ok () -> Ok (bigstring_sub output 0 v.o_pos) (* TODO(dinosaure): we can replace it by [unsafe_sub]. *) | Error (#error as err) -> Error err | exception Out_of_bound -> Error (`Invalid_argument "Input is malformed or output is not large enough") let uncompress_with_buffer ?(chunk = 0x1000) input : (string, [> error ]) result = let v = {i= input; i_pos= 0; o= bigstring_empty; o_pos= 0; state= State._0} in let buf = Buffer.create chunk in let transmit v len = transmit_to_buffer buf v len in let copy v ~off ~len = copy_to_buffer buf v ~off ~len in match run ~transmit ~copy fiber v with | Ok () -> Ok (Buffer.contents buf) | Error (#error as err) -> Error err | exception Out_of_bound -> Error (`Malformed "Malformed input") (* inflate *) let _m3_marker = 32 let _m4_marker = 16 let _m2_max_len = 8 let _m3_max_len = 33 let _m4_max_len = 9 let _m2_max_offset = 0x0800 let _m3_max_offset = 0x4000 let ( .%[] ) buf ofs = get_int8 buf ofs let ( .%[]<- ) buf ofs v = set_int8 buf ofs v let index = [| 0; 1; 2; 53; 3; 7; 54; 27; 4; 38; 41; 8; 34; 55; 48; 28; 62; 5; 39; 46; 44 ; 42; 22; 9; 24; 35; 59; 56; 49; 18; 29; 11; 63; 52; 6; 26; 37; 40; 33; 47 ; 61; 45; 43; 21; 23; 58; 17; 10; 51; 25; 36; 32; 60; 20; 57; 16; 50; 31; 19 ; 15; 30; 14; 13; 12 |] let ctz v = let neg = Int64.neg in let ( land ) = Int64.logand in let ( * ) = Int64.mul in let ( >> ) = Int64.shift_right_logical in let idx = v land neg v * 0x022fdd63cc95386dL >> 58 in index.(Int64.to_int idx) let record_match ~off ~len out_data _anchor out_pos = let out_pos = ref out_pos in (if len <= _m2_max_len && off <= _m2_max_offset then ( let off = off - 1 in out_data.%[!out_pos] <- ((len - 1) lsl 5) lor ((off land 7) lsl 2) ; incr out_pos ; out_data.%[!out_pos] <- off asr 3 ; incr out_pos) else if off <= _m3_max_offset then ( let off = off - 1 in (if len <= _m3_max_len then ( out_data.%[!out_pos] <- _m3_marker lor (len - 2) ; incr out_pos) else let len = ref (len - _m3_max_len) in out_data.%[!out_pos] <- _m3_marker lor 0 ; incr out_pos ; while !len > 255 do len := !len - 255 ; out_data.%[!out_pos] <- 0 ; incr out_pos done ; out_data.%[!out_pos] <- !len ; incr out_pos) ; out_data.%[!out_pos] <- off lsl 2 ; incr out_pos ; out_data.%[!out_pos] <- off asr 6 ; incr out_pos) else let off = off - 0x4000 in (if len <= _m4_max_len then ( out_data.%[!out_pos] <- _m4_marker lor ((off asr 11) land 8) lor (len - 2) ; incr out_pos) else let len = ref (len - _m4_max_len) in out_data.%[!out_pos] <- _m4_marker lor ((off asr 11) land 8) ; incr out_pos ; while !len > 255 do len := !len - 255 ; out_data.%[!out_pos] <- 0 ; incr out_pos done ; out_data.%[!out_pos] <- !len ; incr out_pos) ; out_data.%[!out_pos] <- off lsl 2 ; incr out_pos ; out_data.%[!out_pos] <- off asr 6 ; incr out_pos) ; !out_pos let record_literals ~off ~len in_data out_data _anchor out_pos = let out_pos = ref out_pos in let in_pos = ref off in if len > 0 then if len <= 3 then ( out_data.%[!out_pos - 2] <- out_data.%[!out_pos - 2] lor len ; blit in_data off out_data !out_pos 4 ; out_pos := !out_pos + len) else if len <= 16 then ( out_data.%[!out_pos] <- len - 3 ; incr out_pos ; blit in_data off out_data !out_pos 8 ; blit in_data (off + 8) out_data (!out_pos + 8) 8 ; out_pos := !out_pos + len) else ( (if len <= 18 then ( out_data.%[!out_pos] <- len - 3 ; incr out_pos) else let len' = ref (len - 18) in out_data.%[!out_pos] <- 0 ; incr out_pos ; while !len' > 255 do len' := !len' - 255 ; out_data.%[!out_pos] <- 0 ; incr out_pos done ; out_data.%[!out_pos] <- !len' ; incr out_pos) ; blit in_data off out_data !out_pos len ; out_pos := !out_pos + len ; in_pos := !in_pos + len) ; !out_pos, !in_pos let record_trailer ~off ~len in_data out_data out_pos = let out_pos = ref out_pos in if len > 0 then ( (if !out_pos = 0 && len < 238 then ( out_data.%[!out_pos] <- 17 + len ; incr out_pos) else if len <= 3 then out_data.%[!out_pos - 2] <- out_data.%[!out_pos - 2] lor len else if len <= 18 then ( out_data.%[!out_pos] <- len - 3 ; incr out_pos) else let len' = ref (len - 18) in out_data.%[!out_pos] <- 0 ; incr out_pos ; while !len' > 255 do len' := !len' - 255 ; out_data.%[!out_pos] <- 0 ; incr out_pos done ; out_data.%[!out_pos] <- !len' ; incr out_pos) ; blit in_data off out_data !out_pos len) ; out_pos := !out_pos + len ; out_data.%[!out_pos] <- _m4_marker lor 1 ; incr out_pos ; out_data.%[!out_pos] <- 0 ; incr out_pos ; out_data.%[!out_pos] <- 0 ; incr out_pos ; !out_pos let compress in_data in_pos in_len out_data out_pos _out_len t wrkmem = let idx_end = max 0 (in_len - 20) in let rec literal idx0 idx1 op t = (* literal: *) let idx0 = idx0 + (1 + ((idx0 - idx1) asr 5)) in (* TODO: check [lsr]. *) next idx0 idx1 op t and next idx0 idx1 op t = (* next: *) if idx0 - in_pos >= idx_end then (* break *) let idx1 = idx1 - t and t = 0 in in_len - (idx1 - in_pos - t), op else let v = get_int32_le in_data idx0 in let index = Int32.( logand (shift_right (mul 0x1824429dl v) (32 - 14)) (sub (shift_left 1l 14) 1l)) in let index = Int32.to_int index in let reference = wrkmem.{index} + in_pos in wrkmem.{index} <- idx0 - in_pos ; if v <> get_int32_le in_data reference then literal idx0 idx1 op t else let idx1 = idx1 - t in let t = 0 in let unrecorded = idx0 - idx1 in let op, _idx1 = record_literals ~off:idx1 ~len:unrecorded in_data out_data out_pos op in let len = ref 4 in while idx0 + !len - in_pos < idx_end && get_int64_le in_data (idx0 + !len) = get_int64_le in_data (reference + !len) (* XXX(dinosaure): may be [_le] is not needed. *) do len := !len + 8 done (* XXX(dinosaure): it seems that [minilzo] does not call [ctz] at the end of [progl]. May be we do an unsafe access! TODO! *) ; if idx0 + !len - in_pos < in_len then len := !len + ctz (Int64.logxor (get_int64_le in_data (idx0 + !len)) (get_int64_le in_data (reference + !len))) / 8 ; let op = record_match ~off:(idx0 - reference) ~len:!len out_data out_pos op in next (idx0 + !len) (idx0 + !len) op t in let idx0 = in_pos + if t < 4 then 4 - t else 0 in literal idx0 in_pos out_pos t type wrkmem = (int, Bigarray.int16_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t let make_wrkmem () = Bigarray.Array1.create Bigarray.int16_unsigned Bigarray.c_layout (1 lsl 14) module Wrkmem = struct let memset t v = Bigarray.Array1.fill t v end let compress in_data in_len out_data out_len wrkmem = let rec go idx len out_pos t = if len <= 20 then trailer idx len out_pos t else (* len > 20 *) let ll = min len 49152 in if (t + ll) lsr 5 <= 0 then trailer idx len out_pos t else ( Wrkmem.memset wrkmem 0 ; let t, out_pos = compress in_data idx ll out_data out_pos out_len t wrkmem in go (idx + ll) (len - ll) out_pos t) and trailer _idx len out_pos t = let t = t + len in let out_pos = record_trailer ~off:(in_len - t) ~len:t in_data out_data out_pos in out_pos in try go 0 in_len 0 0 with Out_of_bound -> invalid_arg "lzo: output is not large enough" let compress in_data out_data wrkmem = Wrkmem.memset wrkmem 0 ; compress in_data (bigstring_length in_data) out_data (bigstring_length out_data) wrkmem
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>