package tezos-protocol-alpha
Tezos/Protocol: economic-protocol definition
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/tezos-protocol-alpha.raw/sc_rollup_wasm.ml.html
Source file sc_rollup_wasm.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2021 Nomadic Labs <contact@nomadic-labs.com> *) (* Copyright (c) 2022 Trili Tech, <contact@trili.tech> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) type error += WASM_proof_verification_failed type error += WASM_proof_production_failed type error += WASM_output_proof_production_failed type error += WASM_invalid_claim_about_outbox type error += WASM_invalid_dissection_distribution let () = let open Data_encoding in let msg = "Invalid claim about outbox" in register_error_kind `Permanent ~id:"smart_rollup_wasm_invalid_claim_about_outbox" ~title:msg ~pp:(fun fmt () -> Format.pp_print_string fmt msg) ~description:msg unit (function WASM_invalid_claim_about_outbox -> Some () | _ -> None) (fun () -> WASM_invalid_claim_about_outbox) ; let msg = "Output proof production failed" in register_error_kind `Permanent ~id:"smart_rollup_wasm_output_proof_production_failed" ~title:msg ~pp:(fun fmt () -> Format.fprintf fmt "%s" msg) ~description:msg unit (function WASM_output_proof_production_failed -> Some () | _ -> None) (fun () -> WASM_output_proof_production_failed) ; let msg = "Proof production failed" in register_error_kind `Permanent ~id:"smart_rollup_wasm_proof_production_failed" ~title:msg ~pp:(fun fmt () -> Format.fprintf fmt "%s" msg) ~description:msg unit (function WASM_proof_production_failed -> Some () | _ -> None) (fun () -> WASM_proof_production_failed) ; let msg = "Invalid dissection distribution: not all ticks are a multiplier of the \ maximum number of ticks of a snapshot" in register_error_kind `Permanent ~id:"smart_rollup_wasm_invalid_dissection_distribution" ~title:msg ~pp:(fun fmt () -> Format.fprintf fmt "%s" msg) ~description:msg unit (function WASM_invalid_dissection_distribution -> Some () | _ -> None) (fun () -> WASM_invalid_dissection_distribution) module V2_0_0 = struct let current_version = Wasm_2_0_0.v1 let ticks_per_snapshot = Z.of_int64 11_000_000_000L let outbox_validity_period = Int32.of_int 80_640 let outbox_message_limit = Z.of_int 100 let well_known_reveal_preimage = "" let well_known_reveal_hash = Sc_rollup_reveal_hash.hash_string ~scheme:Blake2B [well_known_reveal_preimage] (* This is the state hash of reference that both the prover of the node and the verifier of the protocol {!Protocol_implementation} have to agree on (if they do, it means they are using the same tree structure). We have to hard-code this value because the Wasm PVM uses Irmin as its Merkle proof verification backend, and the economic protocol cannot create an empty Irmin context. Such a context is required to create an empty tree, itself required to create the initial state of the Wasm PVM. Utlimately, the value of this constant is decided by the prover of reference (the only need is for it to be compatible with {!Protocol_implementation}.) Its value is the result of the following snippet {| let*! state = Prover.initial_state context in Prover.state_hash state |} *) let reference_initial_state_hash = Sc_rollup_repr.State_hash.of_b58check_exn "srs129wuRkckJpSyDhsqSvzE3qSVnvJZ7nD93r3b6oiBtPxa9LMBHu" open Sc_rollup_repr module PS = Sc_rollup_PVM_sig module type TreeS = Context.TREE with type key = string list and type value = bytes module type Make_wasm = module type of Wasm_2_0_0.Make module type P = sig module Tree : TreeS type tree = Tree.tree type proof val proof_encoding : proof Data_encoding.t val proof_before : proof -> State_hash.t val proof_after : proof -> State_hash.t val verify_proof : proof -> (tree -> (tree * 'a) Lwt.t) -> (tree * 'a) option Lwt.t val produce_proof : Tree.t -> tree -> (tree -> (tree * 'a) Lwt.t) -> (proof * 'a) option Lwt.t end module type S = sig include Sc_rollup_PVM_sig.S val parse_boot_sector : string -> string option val pp_boot_sector : Format.formatter -> string -> unit (** [get_tick state] gets the total tick counter for the given PVM state. *) val get_tick : state -> Sc_rollup_tick_repr.t Lwt.t (** PVM status *) type status = | Computing | Waiting_for_input_message | Waiting_for_reveal of Sc_rollup_PVM_sig.reveal (** [get_status state] gives you the current execution status for the PVM. *) val get_status : state -> status Lwt.t val get_outbox : Raw_level_repr.t -> state -> Sc_rollup_PVM_sig.output list Lwt.t end (* [Make (Make_backend) (Context)] creates a PVM. The Make_backend is a functor that creates the backend of the PVM. The Conext provides the tree and the proof types. *) module Make (Make_backend : Make_wasm) (Context : P) : S with type context = Context.Tree.t and type state = Context.tree and type proof = Context.proof = struct module Tree = Context.Tree type context = Context.Tree.t type hash = State_hash.t type proof = Context.proof let proof_encoding = Context.proof_encoding let proof_start_state proof = Context.proof_before proof let proof_stop_state proof = Context.proof_after proof let parse_boot_sector s = Hex.to_string @@ `Hex s let pp_boot_sector fmt s = Format.fprintf fmt "%s" s type tree = Tree.tree type status = | Computing | Waiting_for_input_message | Waiting_for_reveal of Sc_rollup_PVM_sig.reveal module State = struct type state = tree module Monad : sig type 'a t val run : 'a t -> state -> (state * 'a) Lwt.t val return : 'a -> 'a t module Syntax : sig val ( let* ) : 'a t -> ('a -> 'b t) -> 'b t end val get : tree t val set : tree -> unit t val lift : 'a Lwt.t -> 'a t end = struct type 'a t = state -> (state * 'a) Lwt.t let return x state = Lwt.return (state, x) let bind m f state = let open Lwt_syntax in let* state, res = m state in f res state module Syntax = struct let ( let* ) = bind end let run m state = m state let get s = Lwt.return (s, s) let set s _ = Lwt.return (s, ()) let lift m s = Lwt.map (fun r -> (s, r)) m end end type state = State.state module WASM_machine = Make_backend (Tree) open State let pp _state = Lwt.return @@ fun fmt () -> Format.pp_print_string fmt "<wasm-state>" open Monad let initial_state ~empty = WASM_machine.initial_state current_version empty let install_boot_sector state boot_sector = WASM_machine.install_boot_sector ~ticks_per_snapshot ~outbox_validity_period ~outbox_message_limit boot_sector state let state_hash state = let context_hash = Tree.hash state in Lwt.return @@ State_hash.context_hash_to_state_hash context_hash let result_of m state = let open Lwt_syntax in let* _, v = run m state in return v let state_of m state = let open Lwt_syntax in let* s, _ = run m state in return s let get_tick : Sc_rollup_tick_repr.t Monad.t = let open Monad.Syntax in let* s = get in let* info = lift (WASM_machine.get_info s) in return @@ Sc_rollup_tick_repr.of_z info.current_tick let get_tick : state -> Sc_rollup_tick_repr.t Lwt.t = result_of get_tick let get_status : status Monad.t = let open Monad.Syntax in let open Sc_rollup_PVM_sig in let* s = get in let* info = lift (WASM_machine.get_info s) in return @@ match info.input_request with | No_input_required -> Computing | Input_required -> Waiting_for_input_message | Reveal_required (Wasm_2_0_0.Reveal_raw_data hash) -> ( match Data_encoding.Binary.of_string_opt Sc_rollup_reveal_hash.encoding hash with | Some hash -> Waiting_for_reveal (Reveal_raw_data hash) | None -> (* In case of an invalid hash, the rollup is blocked. Any commitment will be invalid. *) Waiting_for_reveal (Reveal_raw_data well_known_reveal_hash)) | Reveal_required Wasm_2_0_0.Reveal_metadata -> Waiting_for_reveal Reveal_metadata let get_last_message_read : _ Monad.t = let open Monad.Syntax in let* s = get in let* info = lift (WASM_machine.get_info s) in return @@ match info.last_input_read with | Some {inbox_level; message_counter} -> let inbox_level = Raw_level_repr.of_int32_non_negative inbox_level in Some (inbox_level, message_counter) | _ -> None let is_input_state = let open Monad.Syntax in let* status = get_status in match status with | Waiting_for_input_message -> ( let* last_read = get_last_message_read in match last_read with | Some (level, n) -> return (PS.First_after (level, n)) | None -> return PS.Initial) | Computing -> return PS.No_input_required | Waiting_for_reveal reveal -> return (PS.Needs_reveal reveal) let is_input_state = result_of is_input_state let get_status : state -> status Lwt.t = result_of get_status let get_outbox outbox_level state = let outbox_level_int32 = Raw_level_repr.to_int32_non_negative outbox_level in let open Lwt_syntax in let rec aux outbox message_index = let output = Wasm_2_0_0.{outbox_level = outbox_level_int32; message_index} in let* res = WASM_machine.get_output output state in match res with | None -> return (List.rev outbox) | Some msg -> ( let serialized = Sc_rollup_outbox_message_repr.unsafe_of_string msg in match Sc_rollup_outbox_message_repr.deserialize serialized with | Error _ -> (* The [write_output] host function does not guarantee that the contents of the returned output is a valid encoding of an outbox message. We choose to ignore such messages. An alternative choice would be to craft an output with a payload witnessing the illformedness of the output produced by the kernel. *) (aux [@ocaml.tailcall]) outbox (Z.succ message_index) | Ok message -> let output = PS.{outbox_level; message_index; message} in (aux [@ocaml.tailcall]) (output :: outbox) (Z.succ message_index)) in aux [] Z.zero let set_input_state input = let open Monad.Syntax in match input with | PS.Inbox_message input -> let open PS in let {inbox_level; message_counter; payload} = input in let* s = get in let* s = lift (WASM_machine.set_input_step { inbox_level = Raw_level_repr.to_int32_non_negative inbox_level; message_counter; } (payload :> string) s) in set s | PS.Reveal (PS.Raw_data data) -> let* s = get in let* s = lift (WASM_machine.reveal_step (Bytes.of_string data) s) in set s | PS.Reveal (PS.Metadata metadata) -> let metadata_bytes = Data_encoding.Binary.to_bytes_exn Sc_rollup_metadata_repr.encoding metadata in let* s = get in let* s = lift (WASM_machine.reveal_step metadata_bytes s) in set s | PS.Reveal (PS.Dal_page _content_opt) -> (* FIXME/DAL: https://gitlab.com/tezos/tezos/-/issues/3927. Handle DAL pages in wasm PVM. *) assert false let set_input input = state_of @@ set_input_state input let eval_step = let open Monad.Syntax in let* s = get in let* s = lift (WASM_machine.compute_step s) in set s let eval state = state_of eval_step state let step_transition input_given state = let open Lwt_syntax in let* request = is_input_state state in let* state = match request with | PS.No_input_required -> eval state | _ -> ( match input_given with | Some input -> set_input input state | None -> return state) in return (state, request) let verify_proof input_given proof = let open Lwt_result_syntax in let*! result = Context.verify_proof proof (step_transition input_given) in match result with | None -> tzfail WASM_proof_verification_failed | Some (_state, request) -> return request let produce_proof context input_given state = let open Lwt_result_syntax in let*! result = Context.produce_proof context state (step_transition input_given) in match result with | Some (tree_proof, _requested) -> return tree_proof | None -> tzfail WASM_proof_production_failed let verify_origination_proof proof boot_sector = let open Lwt_syntax in let before = Context.proof_before proof in if State_hash.(before <> reference_initial_state_hash) then return false else let* result = Context.verify_proof proof (fun state -> let* state = install_boot_sector state boot_sector in return (state, ())) in match result with None -> return false | Some (_, ()) -> return true let produce_origination_proof context boot_sector = let open Lwt_result_syntax in let*! state = initial_state ~empty:(Tree.empty context) in let*! result = Context.produce_proof context state (fun state -> let open Lwt_syntax in let* state = install_boot_sector state boot_sector in return (state, ())) in match result with | Some (tree_proof, ()) -> return tree_proof | None -> tzfail WASM_proof_production_failed type output_proof = { output_proof : Context.proof; output_proof_state : hash; output_proof_output : PS.output; } let output_proof_encoding = let open Data_encoding in conv (fun {output_proof; output_proof_state; output_proof_output} -> (output_proof, output_proof_state, output_proof_output)) (fun (output_proof, output_proof_state, output_proof_output) -> {output_proof; output_proof_state; output_proof_output}) (obj3 (req "output_proof" Context.proof_encoding) (req "output_proof_state" State_hash.encoding) (req "output_proof_output" PS.output_encoding)) let output_of_output_proof s = s.output_proof_output let state_of_output_proof s = s.output_proof_state let has_output : PS.output -> bool Monad.t = function | {outbox_level; message_index; message} -> ( let open Monad.Syntax in let* s = get in let* result = lift (WASM_machine.get_output { outbox_level = Raw_level_repr.to_int32_non_negative outbox_level; message_index; } s) in let message_encoded = Data_encoding.Binary.to_string_exn Sc_rollup_outbox_message_repr.encoding message in return @@ match result with | Some result -> Compare.String.(result = message_encoded) | None -> false) let verify_output_proof p = let open Lwt_syntax in let transition = run @@ has_output p.output_proof_output in let* result = Context.verify_proof p.output_proof transition in match result with None -> return false | Some _ -> return true let produce_output_proof context state output_proof_output = let open Lwt_result_syntax in let*! output_proof_state = state_hash state in let*! result = Context.produce_proof context state @@ run @@ has_output output_proof_output in match result with | Some (output_proof, true) -> return {output_proof; output_proof_state; output_proof_output} | Some (_, false) -> fail WASM_invalid_claim_about_outbox | None -> fail WASM_output_proof_production_failed let check_sections_number ~default_number_of_sections ~number_of_sections ~dist = let open Sc_rollup_dissection_chunk_repr in let is_stop_chunk_aligned = Compare.Z.(Z.rem dist ticks_per_snapshot = Z.zero) in let max_number_of_sections = Z.(div dist ticks_per_snapshot) in let expected = Compare.Z.min (Z.of_int default_number_of_sections) (if is_stop_chunk_aligned then max_number_of_sections else Z.succ max_number_of_sections) in let given = Z.of_int number_of_sections in error_unless Compare.Z.(given = expected) (Dissection_number_of_sections_mismatch {given; expected}) let check_dissection ~default_number_of_sections ~start_chunk ~stop_chunk dissection = let open Result_syntax in let open Sc_rollup_dissection_chunk_repr in let dist = Sc_rollup_tick_repr.distance start_chunk.tick stop_chunk.tick in (* We fall back to the default dissection check when the [kernel_run] culprit has been found and is being dissected. This condition will also be met if the PVM is stuck (because it is unlikely that [ticks_per_snapshot] messages can be posted in a commitment period), which is OKay because the Fast Execution cannot be leveraged in that case, which means the ad-hoc dissection predicate would not provide any speed up. *) if Compare.Z.(dist <= ticks_per_snapshot) then default_check ~section_maximum_size:Z.(div dist (Z.of_int 2)) ~check_sections_number:default_check_sections_number ~default_number_of_sections ~start_chunk ~stop_chunk dissection else (* There are enough ticks to consider that at least one call to [kernel_run] is involved. We now need to consider two cases: either [stop_chunk] is a multiple of [ticks_per_snapshot] (the PVM is not stuck), or it is not (the PVM has been stuck during the processing of one of the ticks of the dissection). For the latter case, we want to validate a dissection if 1. Every complete [kernel_run] invocations are dissected as normal in the n-1 first chunks, and 2. The final section contains all the ticks of the interrupted [kernel_run]. *) let is_stop_chunk_aligned = Compare.Z.(Z.rem dist ticks_per_snapshot = Z.zero) in (* We keep the same dissection predicate as the default dissection that a given section cannot be more than half of the “full distance”, but we only consider the complete calls to [kernel_run] in the “full distance”. The remainder ticks will be put in the very last section. *) let considered_dist = if is_stop_chunk_aligned then dist else let last_valid_stop_tick = Sc_rollup_tick_repr.of_z Z.( mul (div (Sc_rollup_tick_repr.to_z stop_chunk.tick) ticks_per_snapshot) ticks_per_snapshot) in Sc_rollup_tick_repr.(distance start_chunk.tick last_valid_stop_tick) in (* There is one last corner case to consider: if the stuck state happens in the second [kernel_run] of the period. In this case, the considered distance is equal to the snapshot size, and divided this value by two means the maximum size of a section becomes 0. So we keep that a section length is at least [ticks_per_snapshot]. *) let section_maximum_size = Z.max ticks_per_snapshot (Z.div considered_dist (Z.of_int 2)) in let* () = default_check ~section_maximum_size ~check_sections_number ~default_number_of_sections ~start_chunk ~stop_chunk dissection in error_unless (List.for_all (fun chunk -> let open Sc_rollup_tick_repr in Z.( equal (rem (to_z chunk.tick) ticks_per_snapshot) zero || Sc_rollup_tick_repr.equal start_chunk.tick chunk.tick || Sc_rollup_tick_repr.equal stop_chunk.tick chunk.tick)) dissection) WASM_invalid_dissection_distribution let get_current_level state = let open Lwt_syntax in let+ res = result_of get_last_message_read state in Option.map fst res module Internal_for_tests = struct let insert_failure state = let add n = Tree.add state ["failures"; string_of_int n] Bytes.empty in let open Lwt_syntax in let* n = Tree.length state ["failures"] in add n end end module Protocol_implementation = Make (Wasm_2_0_0.Make) (struct module Tree = struct include Context.Tree type tree = Context.tree type t = Context.t type key = string list type value = bytes end type tree = Context.tree type proof = Context.Proof.tree Context.Proof.t let verify_proof p f = let open Lwt_option_syntax in let*? () = Result.to_option (Context_binary_proof.check_is_binary p) in Lwt.map Result.to_option (Context.verify_tree_proof p f) let produce_proof _context _state _f = (* Can't produce proof without full context*) Lwt.return None let kinded_hash_to_state_hash = function | `Value hash | `Node hash -> State_hash.context_hash_to_state_hash hash let proof_before proof = kinded_hash_to_state_hash proof.Context.Proof.before let proof_after proof = kinded_hash_to_state_hash proof.Context.Proof.after let proof_encoding = Context.Proof_encoding.V2.Tree2.tree_proof_encoding end) end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>