package tezos-protocol-alpha
Tezos/Protocol: economic-protocol definition
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/tezos-protocol-alpha.raw/sc_rollup_refutation_storage.ml.html
Source file sc_rollup_refutation_storage.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* Copyright (c) 2022 TriliTech <contact@trili.tech> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Sc_rollup_errors module Store = Storage.Sc_rollup module Commitment = Sc_rollup_commitment_repr module Commitment_storage = Sc_rollup_commitment_storage module Commitment_hash = Commitment.Hash module Stake_storage = Sc_rollup_stake_storage type point = { commitment : Sc_rollup_commitment_repr.t; hash : Commitment_hash.t; } type conflict_point = point * point (** [initial_timeout ctxt] set the initial timeout of players. The initial timeout of each player is equal to [sc_rollup_timeout_period_in_blocks]. *) let initial_timeout ctxt = let last_turn_level = (Raw_context.current_level ctxt).level in let timeout_period_in_blocks = Constants_storage.sc_rollup_timeout_period_in_blocks ctxt in Sc_rollup_game_repr. { alice = timeout_period_in_blocks; bob = timeout_period_in_blocks; last_turn_level; } (** [update_timeout ctxt rollup game idx] update the timeout left for the current player [game.turn]. Her new timeout is equal to [nb_of_block_left - (current_level - last_turn_level)] where [nb_of_block_left] is her current timeout. *) let update_timeout ctxt rollup (game : Sc_rollup_game_repr.t) idx = let open Lwt_result_syntax in let* ctxt, timeout = Store.Game_timeout.get (ctxt, rollup) idx in let current_level = (Raw_context.current_level ctxt).level in let sub_block_left nb_of_block_left = nb_of_block_left - Int32.to_int (Raw_level_repr.diff current_level timeout.last_turn_level) in let new_timeout = match game.turn with | Alice -> let nb_of_block_left = sub_block_left timeout.alice in {timeout with last_turn_level = current_level; alice = nb_of_block_left} | Bob -> let nb_of_block_left = sub_block_left timeout.bob in {timeout with last_turn_level = current_level; bob = nb_of_block_left} in let* ctxt, _ = Store.Game_timeout.update (ctxt, rollup) idx new_timeout in return ctxt let get_ongoing_games_for_staker ctxt rollup staker = let open Lwt_result_syntax in let* ctxt, entries = Store.Game.list_key_values ((ctxt, rollup), staker) in let* ctxt, games = List.fold_left_es (fun (ctxt, games) (opponent, game_index) -> let* ctxt, answer = Store.Game_info.find (ctxt, rollup) game_index in match answer with | None -> (* A hash in [Store.Game] is always present in [Store.Game_info]. *) assert false | Some game -> let games = (game, Sc_rollup_game_repr.Index.make staker opponent) :: games in return (ctxt, games)) (ctxt, []) entries in return (games, ctxt) (** [commitments_are_conflicting ctxt rollup hash1_opt hash2_opt] returns a conflict description iff [hash1_opt] and [hash2_opt] are two different commitments with the same predecessor. *) let commitments_are_conflicting ctxt rollup hash1_opt hash2_opt = let open Lwt_result_syntax in match (hash1_opt, hash2_opt) with | Some hash1, Some hash2 when Commitment_hash.(hash1 <> hash2) -> let* commitment1, ctxt = Commitment_storage.get_commitment_unsafe ctxt rollup hash1 in let* commitment2, ctxt = Commitment_storage.get_commitment_unsafe ctxt rollup hash2 in if Commitment_hash.(commitment1.predecessor = commitment2.predecessor) then let conflict_point = ( {hash = hash1; commitment = commitment1}, {hash = hash2; commitment = commitment2} ) in return (ctxt, Some conflict_point) else return (ctxt, None) | _ -> return (ctxt, None) (** [look_for_conflict ctxt rollup staker1_index staker2_index from_level upto_level delta] looks for the first conflict of [staker1_index] and [staker2_index]. It starts at [from_level] which the last cemented inbox level on the [rollup], and climbs the staking's storage through a recursive function. Two important notes: {ol {li The code can do at most (max_lookahead / commitment_period) recursive calls, which can be a lot;} {li Therefore, this code must be called only via a RPC, used by the rollup-node. The {!check_conflict_point} used by the protocol is on the other hand, very cheap.} } FIXME: https://gitlab.com/tezos/tezos/-/issues/4477 As it should be used only via an RPC (and by the rollup-node), we should move this function (and other related functions) outside the protocol. *) let look_for_conflict ctxt rollup staker1_index staker2_index from_level upto_level delta = let open Lwt_result_syntax in let rec go ctxt from_level = if Raw_level_repr.(from_level >= upto_level) then tzfail Sc_rollup_no_conflict else let* ctxt, commitments = Sc_rollup_stake_storage.commitments_of_inbox_level ctxt rollup from_level in let* ctxt, hash1_opt = Sc_rollup_stake_storage.find_commitment_of_staker_in_commitments ctxt rollup staker1_index commitments in let* ctxt, hash2_opt = Sc_rollup_stake_storage.find_commitment_of_staker_in_commitments ctxt rollup staker2_index commitments in let* ctxt, conflict_point_opt = commitments_are_conflicting ctxt rollup hash1_opt hash2_opt in match conflict_point_opt with | Some conflict_point -> return (conflict_point, ctxt) | None -> let from_level = Raw_level_repr.add from_level delta in go ctxt from_level in go ctxt from_level (** [get_conflict_point ctxt rollup staker1 staker2] starts from the LCC's successor and look for the first conflict between [staker1] and [staker2], if any. *) let get_conflict_point ctxt rollup staker1 staker2 = let open Lwt_result_syntax in let* ctxt, staker1_index = Sc_rollup_staker_index_storage.get_staker_index_unsafe ctxt rollup staker1 in let* ctxt, staker2_index = Sc_rollup_staker_index_storage.get_staker_index_unsafe ctxt rollup staker2 in let* _lcc, lcc_inbox_level, ctxt = Commitment_storage.last_cemented_commitment_hash_with_level ctxt rollup in let current_level = (Raw_context.current_level ctxt).level in let commitment_period = Constants_storage.sc_rollup_commitment_period_in_blocks ctxt in look_for_conflict ctxt rollup staker1_index staker2_index (Raw_level_repr.add lcc_inbox_level commitment_period) current_level commitment_period let get_game ctxt rollup stakers = let open Lwt_result_syntax in let open Sc_rollup_game_repr.Index in let* ctxt, game_index = Store.Game.find ((ctxt, rollup), stakers.alice) stakers.bob in match game_index with | None -> tzfail Sc_rollup_no_game | Some game_hash -> ( let* ctxt, game = Store.Game_info.find (ctxt, rollup) game_hash in match game with | Some game -> return (game, ctxt) | None -> tzfail Sc_rollup_no_game) let create_game ctxt rollup stakers game = let open Lwt_result_syntax in let open Sc_rollup_game_repr.Index in let* ctxt, _ = Store.Game_info.init (ctxt, rollup) stakers game in let* ctxt, _ = Store.Game.init ((ctxt, rollup), stakers.alice) stakers.bob stakers in let* ctxt, _ = Store.Game.init ((ctxt, rollup), stakers.bob) stakers.alice stakers in return ctxt let update_game ctxt rollup stakers new_game = let open Lwt_result_syntax in let* ctxt, _storage_diff = Store.Game_info.update (ctxt, rollup) stakers new_game in return ctxt let remove_game ctxt rollup stakers = let open Lwt_result_syntax in let open Sc_rollup_game_repr.Index in let* ctxt, _storage_diff, _was_here = Store.Game.remove ((ctxt, rollup), stakers.alice) stakers.bob in let* ctxt, _storage_diff, _was_here = Store.Game.remove ((ctxt, rollup), stakers.bob) stakers.alice in let* ctxt, _storage_diff, _was_here = Store.Game_info.remove (ctxt, rollup) stakers in return ctxt (** [check_conflict_point ctxt rollup ~refuter ~refuter_commitment_hash ~defender ~defender_commitment_hash] checks that the refuter is staked on [commitment] with hash [refuter_commitment_hash], res. for [defender] and [defender_commitment] with hash [defender_commitment_hash]. Fails with {!Sc_rollup_errors.Sc_rollup_wrong_staker_for_conflict_commitment}. It also verifies that both are pointing to the same predecessor and thus are in conflict, fails with {!Sc_rollup_errors.Sc_rollup_not_first_conflict_between_stakers} otherwise. *) let check_conflict_point ctxt rollup ~refuter ~refuter_commitment_hash ~defender ~defender_commitment_hash = let open Lwt_result_syntax in let fail_unless_staker_is_staked_on_commitment ctxt staker commitment_hash = let* ctxt, is_staked = Sc_rollup_stake_storage.is_staked_on ctxt rollup staker commitment_hash in let* () = fail_unless is_staked (Sc_rollup_wrong_staker_for_conflict_commitment (staker, commitment_hash)) in return ctxt in let* ctxt = fail_unless_staker_is_staked_on_commitment ctxt refuter refuter_commitment_hash in let* ctxt = fail_unless_staker_is_staked_on_commitment ctxt defender defender_commitment_hash in let* refuter_commitment, ctxt = Commitment_storage.get_commitment_unsafe ctxt rollup refuter_commitment_hash in let* defender_commitment, ctxt = Commitment_storage.get_commitment_unsafe ctxt rollup defender_commitment_hash in let* () = fail_unless Commitment_hash.(refuter_commitment_hash <> defender_commitment_hash) Sc_rollup_errors.Sc_rollup_no_conflict in let* () = fail_unless Commitment_hash.( refuter_commitment.predecessor = defender_commitment.predecessor) (Sc_rollup_errors.Sc_rollup_not_valid_commitments_conflict (refuter_commitment_hash, refuter, defender_commitment_hash, defender)) in return (defender_commitment, ctxt) let check_staker_availability ctxt rollup staker = let open Lwt_result_syntax in let* ctxt, is_staker = Sc_rollup_staker_index_storage.is_staker ctxt rollup staker in let* () = fail_unless is_staker Sc_rollup_not_staked in let* ctxt, entries = Store.Game.list_key_values ((ctxt, rollup), staker) in let* () = fail_when Compare.List_length_with.( entries >= Constants_storage.sc_rollup_max_number_of_parallel_games ctxt) (Sc_rollup_max_number_of_parallel_games_reached staker) in return ctxt (** [start_game ctxt rollup ~player:(player, player_commitment_hash) ~opponent:(opponent, opponent_commitment_hash)] initialises the game or if it already exists fails with [Sc_rollup_game_already_started]. The game is created with [player] as the first player to move. The initial state of the game will be obtained from the commitment pair belonging to [opponent] at the conflict point. See [Sc_rollup_game_repr.initial] for documentation on how a pair of commitments is turned into an initial game state. This also deals with the other bits of data in the storage around the game. Notice that a staker can participate in multiple games in parallel. However, there is at most one game between two given stakers since a staker can publish at most one commitment per inbox level. It also initialises the timeout level to the current level plus [timeout_period_in_blocks] to mark the block level at which it becomes possible for anyone to end the game by timeout. May fail with: {ul {li [Sc_rollup_does_not_exist] if [rollup] does not exist} {li [Sc_rollup_no_conflict] if [player] is staked on an ancestor of the commitment staked on by [opponent], or vice versa} {li [Sc_rollup_not_staked] if one of the [player] or [opponent] is not actually staked} {li [Sc_rollup_staker_in_game] if one of the [player] or [opponent] is already playing a game} {li [Sc_rollup_not_first_conflict_between_stakers] if the provided commitments are not the first commitments in conflict between [player] and [opponent].} *) let start_game ctxt rollup ~player:(player, player_commitment_hash) ~opponent:(opponent, opponent_commitment_hash) = let open Lwt_result_syntax in (* When the game is started by a given [player], this player is called the [refuter] and its opponent is the [defender]. *) let refuter = player and refuter_commitment_hash = player_commitment_hash and defender = opponent and defender_commitment_hash = opponent_commitment_hash in let stakers = Sc_rollup_game_repr.Index.make refuter defender in let* ctxt, game_exists = Store.Game_info.mem (ctxt, rollup) stakers in let* () = fail_when game_exists Sc_rollup_game_already_started in let* ctxt = check_staker_availability ctxt rollup stakers.alice in let* ctxt = check_staker_availability ctxt rollup stakers.bob in let* defender_commitment, ctxt = check_conflict_point ctxt rollup ~refuter ~defender ~refuter_commitment_hash ~defender_commitment_hash in let* parent_commitment, ctxt = Commitment_storage.get_commitment_unsafe ctxt rollup defender_commitment.predecessor in let* inbox, ctxt = Sc_rollup_inbox_storage.get_inbox ctxt in let default_number_of_sections = Constants_storage.sc_rollup_number_of_sections_in_dissection ctxt in let* slots_history_snapshot = Dal_slot_storage.get_slot_headers_history ctxt in let current_level = (Raw_context.current_level ctxt).level in let game = Sc_rollup_game_repr.initial ~start_level:current_level (Sc_rollup_inbox_repr.take_snapshot inbox) slots_history_snapshot ~refuter ~defender ~default_number_of_sections ~parent_commitment ~defender_commitment in let* ctxt = create_game ctxt rollup stakers game in let* ctxt, _ = Store.Game_timeout.init (ctxt, rollup) stakers (initial_timeout ctxt) in return ctxt let check_stakes ctxt rollup (stakers : Sc_rollup_game_repr.Index.t) = let open Lwt_result_syntax in let open Sc_rollup_game_repr in let* ctxt, alice_stake = Sc_rollup_staker_index_storage.is_staker ctxt rollup stakers.alice in let* ctxt, bob_stake = Sc_rollup_staker_index_storage.is_staker ctxt rollup stakers.bob in let game_over loser = Loser {loser; reason = Conflict_resolved} in match (alice_stake, bob_stake) with | true, true -> return (None, ctxt) | false, true -> return (Some (game_over stakers.alice), ctxt) | true, false -> return (Some (game_over stakers.bob), ctxt) | false, false -> return (Some Draw, ctxt) let game_move ctxt rollup ~player ~opponent ~step ~choice = let open Lwt_result_syntax in let stakers = Sc_rollup_game_repr.Index.make player opponent in let* game, ctxt = get_game ctxt rollup stakers in let* ctxt, kind = Store.PVM_kind.get ctxt rollup in let* () = fail_unless (Sc_rollup_repr.Staker.equal player (Sc_rollup_game_repr.Index.staker stakers game.turn)) Sc_rollup_wrong_turn in let* ctxt, metadata = Sc_rollup_storage.get_metadata ctxt rollup in let dal = (Constants_storage.parametric ctxt).dal in let* check_result, ctxt = check_stakes ctxt rollup stakers in match check_result with | Some game_result -> return (Some game_result, ctxt) | None -> ( let play_cost = Sc_rollup_game_repr.cost_play ~step ~choice in let*? ctxt = Raw_context.consume_gas ctxt play_cost in let* move_result = Sc_rollup_game_repr.play kind dal.cryptobox_parameters ~dal_attestation_lag:dal.attestation_lag ~stakers metadata game ~step ~choice in match move_result with | Either.Left game_result -> return (Some game_result, ctxt) | Either.Right new_game -> let* ctxt = update_game ctxt rollup stakers new_game in let* ctxt = update_timeout ctxt rollup game stakers in return (None, ctxt)) let get_timeout ctxt rollup stakers = let open Lwt_result_syntax in let* ctxt, timeout_opt = Storage.Sc_rollup.Game_timeout.find (ctxt, rollup) stakers in match timeout_opt with | Some timeout -> return (timeout, ctxt) | None -> tzfail Sc_rollup_no_game let timeout ctxt rollup stakers = let open Lwt_result_syntax in let level = (Raw_context.current_level ctxt).level in let* game, ctxt = get_game ctxt rollup stakers in let* ctxt, timeout = Store.Game_timeout.get (ctxt, rollup) stakers in let* () = let block_left_before_timeout = match game.turn with Alice -> timeout.alice | Bob -> timeout.bob in let level_of_timeout = Raw_level_repr.add timeout.last_turn_level block_left_before_timeout in fail_unless Raw_level_repr.(level > level_of_timeout) (let blocks_left = Raw_level_repr.(diff level_of_timeout level) in let staker = match game.turn with Alice -> stakers.alice | Bob -> stakers.bob in Sc_rollup_timeout_level_not_reached (blocks_left, staker)) in let game_result = match game.game_state with | Dissecting _ -> (* Timeout during the dissecting results in a loss. *) let loser = Sc_rollup_game_repr.Index.staker stakers game.turn in Sc_rollup_game_repr.(Loser {loser; reason = Timeout}) | Final_move {agreed_start_chunk = _; refuted_stop_chunk = _} -> (* Timeout-ed because the opponent played an invalid move and the current player is not playing. Both are invalid moves. *) Sc_rollup_game_repr.Draw in return (game_result, ctxt) let reward ctxt winner = let open Lwt_result_syntax in let winner_contract = Contract_repr.Implicit winner in let stake = Constants_storage.sc_rollup_stake_amount ctxt in let*? reward = Tez_repr.(stake /? 2L) in Token.transfer ctxt `Sc_rollup_refutation_rewards (`Contract winner_contract) reward let remove_if_staker_is_still_there ctxt rollup staker = let open Lwt_result_syntax in let* ctxt, is_staker = Sc_rollup_staker_index_storage.is_staker ctxt rollup staker in if is_staker then Stake_storage.remove_staker ctxt rollup staker else return (ctxt, []) let apply_game_result ctxt rollup (stakers : Sc_rollup_game_repr.Index.t) (game_result : Sc_rollup_game_repr.game_result) = let open Lwt_result_syntax in let status = Sc_rollup_game_repr.Ended game_result in let* ctxt, balances_updates = match game_result with | Loser {loser; reason = _} -> let losing_staker = loser in let winning_staker = let Sc_rollup_game_repr.Index.{alice; bob} = stakers in if Signature.Public_key_hash.(alice = loser) then bob else alice in let* ctxt = remove_game ctxt rollup stakers in let* ctxt, balance_updates_loser = remove_if_staker_is_still_there ctxt rollup losing_staker in let* ctxt, balance_updates_winner = (* The winner is rewarded only if he defeated himself the loser. Another way to check this is to reward if the game result's reason is not a forfeit. *) match balance_updates_loser with | [] -> return (ctxt, []) | _ -> reward ctxt winning_staker in let balances_updates = balance_updates_loser @ balance_updates_winner in return (ctxt, balances_updates) | Draw -> let* ctxt, balances_updates_alice = Stake_storage.remove_staker ctxt rollup stakers.alice in let* ctxt, balances_updates_bob = Stake_storage.remove_staker ctxt rollup stakers.bob in return (ctxt, balances_updates_alice @ balances_updates_bob) in let* ctxt, _storage_diff, _was_here = Store.Game_timeout.remove (ctxt, rollup) stakers in return (status, ctxt, balances_updates) module Internal_for_tests = struct let get_conflict_point = get_conflict_point end type conflict = { other : Sc_rollup_repr.Staker.t; their_commitment : Sc_rollup_commitment_repr.t; our_commitment : Sc_rollup_commitment_repr.t; parent_commitment : Sc_rollup_commitment_repr.Hash.t; } let conflict_encoding = Data_encoding.( conv (fun {other; their_commitment; our_commitment; parent_commitment} -> (other, their_commitment, our_commitment, parent_commitment)) (fun (other, their_commitment, our_commitment, parent_commitment) -> {other; their_commitment; our_commitment; parent_commitment}) (obj4 (req "other" Sc_rollup_repr.Staker.encoding) (req "their_commitment" Sc_rollup_commitment_repr.encoding) (req "our_commitment" Sc_rollup_commitment_repr.encoding) (req "parent_commitment" Sc_rollup_commitment_repr.Hash.encoding))) let conflicting_stakers_uncarbonated ctxt rollup staker = let open Lwt_result_syntax in let make_conflict ctxt rollup other (our_point, their_point) = let our_hash = our_point.hash and their_hash = their_point.hash in let get = Sc_rollup_commitment_storage.get_commitment_unsafe ctxt rollup in let* our_commitment, _ctxt = get our_hash in let* their_commitment, _ctxt = get their_hash in let parent_commitment = our_commitment.predecessor in return {other; their_commitment; our_commitment; parent_commitment} in let*! stakers = Sc_rollup_stake_storage.stakers_pkhs_uncarbonated ctxt ~rollup in List.fold_left_es (fun conflicts other_staker -> let*! res = get_conflict_point ctxt rollup staker other_staker in match res with | Ok (conflict_point, _) -> let* conflict = make_conflict ctxt rollup other_staker conflict_point in return (conflict :: conflicts) | Error _ -> return conflicts) [] stakers
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>