package tezos-protocol-alpha
Tezos/Protocol: economic-protocol definition
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-17.3.tar.gz
sha256=7062cd57addd452852598a2214ade393130efa087b99068d53713bdf912b3680
sha512=08e4091144a03ce3c107fb91a66501bd8b65ca3278917c455a2eaac6df3e108ade63f6ab8340a4bb152d60f404326e464d0ec95d26cafe8e82f870465d24a5fc
doc/src/tezos-protocol-alpha.raw/round_repr.ml.html
Source file round_repr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2021 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) type round = int32 type t = round module Map = Map.Make (Int32) include (Compare.Int32 : Compare.S with type t := t) let zero = 0l let succ n = if Compare.Int32.equal n Int32.max_int then invalid_arg "round_repr.succ: cannot apply succ to maximum round value" else Int32.succ n let pp fmt i = Format.fprintf fmt "%ld" i type error += Negative_round of int type error += Round_overflow of int let () = let open Data_encoding in register_error_kind `Permanent ~id:"negative_round" ~title:"Negative round" ~description:"Round cannot be built out of negative integers." ~pp:(fun ppf i -> Format.fprintf ppf "Negative round cannot be built out of negative integers (%Ld)" i) (obj1 (req "Negative_round" int64)) (function Negative_round i -> Some (Int64.of_int i) | _ -> None) (fun i -> Negative_round (Int64.to_int i)) ; register_error_kind `Permanent ~id:"round_overflow" ~title:"Round overflow" ~description: "Round cannot be built out of integer greater than maximum int32 value." ~pp:(fun ppf i -> Format.fprintf ppf "Round cannot be built out of integer greater than maximum int32 value \ (%Ld)" i) (obj1 (req "Round_overflow" int64)) (function Round_overflow i -> Some (Int64.of_int i) | _ -> None) (fun i -> Round_overflow (Int64.to_int i)) let of_int32 i = if i >= 0l then Ok i else error (Negative_round (Int32.to_int i)) [@@inline] let pred r = let p = Int32.pred r in of_int32 p let of_int i = if Compare.Int.(i < 0) then error (Negative_round i) else (* i is positive *) let i32 = Int32.of_int i in if Compare.Int.(Int32.to_int i32 = i) then Ok i32 else error (Round_overflow i) let to_int i32 = let i = Int32.to_int i32 in if Int32.(equal (of_int i) i32) then ok i else error (Round_overflow i) let to_int32 t = t [@@inline] let to_slot round ~committee_size = to_int round >>? fun r -> let slot = r mod committee_size in Slot_repr.of_int slot let encoding = Data_encoding.conv_with_guard (fun i -> i) (fun i -> match of_int32 i with | Ok _ as res -> res | Error _ -> Error "Round_repr.encoding: negative round") Data_encoding.int32 module Durations = struct type t = { first_round_duration : Period_repr.t; delay_increment_per_round : Period_repr.t; } type error += | Non_increasing_rounds of {increment : Period_repr.t} | Round_durations_must_be_at_least_one_second of {round : Period_repr.t} let () = register_error_kind `Permanent ~id:"durations.non_increasing_rounds" ~title:"Non increasing round" ~description:"The provided rounds are not increasing." ~pp:(fun ppf increment -> Format.fprintf ppf "The provided rounds are not increasing (increment: %a)" Period_repr.pp increment) Data_encoding.(obj1 (req "increment" Period_repr.encoding)) (function | Non_increasing_rounds {increment} -> Some increment | _ -> None) (fun increment -> Non_increasing_rounds {increment}) let pp fmt t = Format.fprintf fmt "%a,@ +%a" Period_repr.pp t.first_round_duration Period_repr.pp t.delay_increment_per_round let create ~first_round_duration ~delay_increment_per_round = error_when Compare.Int64.(Period_repr.to_seconds first_round_duration < 1L) (Round_durations_must_be_at_least_one_second {round = first_round_duration}) >>? fun () -> error_when Compare.Int64.(Period_repr.to_seconds delay_increment_per_round < 1L) (Non_increasing_rounds {increment = delay_increment_per_round}) >>? fun () -> ok {first_round_duration; delay_increment_per_round} let create_opt ~first_round_duration ~delay_increment_per_round = match create ~first_round_duration ~delay_increment_per_round with | Ok v -> Some v | Error _ -> None let encoding = let open Data_encoding in conv_with_guard (fun {first_round_duration; delay_increment_per_round} -> (first_round_duration, delay_increment_per_round)) (fun (first_round_duration, delay_increment_per_round) -> match create_opt ~first_round_duration ~delay_increment_per_round with | None -> Error "Either round durations are non-increasing or minimal block \ delay < 1" | Some rounds -> Ok rounds) (obj2 (req "first_round_duration" Period_repr.encoding) (req "delay_increment_per_round" Period_repr.encoding)) let round_duration {first_round_duration; delay_increment_per_round} round = if Compare.Int32.(round < 0l) then invalid_arg "round must be a non-negative integer" else let first_round_duration_s = Period_repr.to_seconds first_round_duration and delay_increment_per_round_s = Period_repr.to_seconds delay_increment_per_round in Period_repr.of_seconds_exn Int64.( add first_round_duration_s (mul (of_int32 round) delay_increment_per_round_s)) end type error += Round_too_high of int32 let () = let open Data_encoding in register_error_kind `Permanent ~id:"round_too_high" ~title:"round too high" ~description:"block round too high." ~pp:(fun ppf round -> Format.fprintf ppf "Block round is too high: %ld" round) (obj1 (req "level_offset_too_high" int32)) (function Round_too_high round -> Some round | _ -> None) (fun round -> Round_too_high round) (* The duration of round n follows the arithmetic sequence: round_duration(0) = first_round_duration round_duration(r+1) = round_duration(r) + delay_increment_per_round Hence, this sequence can be explicited into: round_duration(r) = first_round_duration + r * delay_increment_per_round The level offset of round r is the sum of the durations of the rounds up until round r - 1. In other words, when r > 0 raw_level_offset_of_round(0) = 0 raw_level_offset_of_round(r+1) = raw_level_offset_of_round(r) + round_duration(r) Hence raw_level_offset_of_round(r) = Σ_{k=0}^{r-1} (round_duration(k)) After unfolding the series, the same function can be finally explicited into raw_level_offset_of_round(0) = 0 raw_level_offset_of_round(r) = r * first_round_duration + 1/2 * r * (r - 1) * delay_increment_per_round *) let raw_level_offset_of_round round_durations ~round = if Compare.Int32.(round = zero) then ok Int64.zero else let sum_durations = let Durations.{first_round_duration; delay_increment_per_round} = round_durations in let roundz = Int64.of_int32 round in let m = Z.of_int64 Int64.(div (mul roundz (pred roundz)) (of_int 2)) in Z.( add (mul m (Z.of_int64 @@ Period_repr.to_seconds delay_increment_per_round)) (mul (Z.of_int32 round) (Z.of_int64 @@ Period_repr.to_seconds first_round_duration))) in if Compare.Z.(sum_durations > Z.of_int64 Int64.max_int) then error (Round_too_high round) else ok (Z.to_int64 sum_durations) type error += Level_offset_too_high of Period_repr.t let () = let open Data_encoding in register_error_kind `Permanent ~id:"level_offset_too_high" ~title:"level offset too high" ~description:"The block's level offset is too high." ~pp:(fun ppf offset -> Format.fprintf ppf "The block's level offset is too high: %a" Period_repr.pp offset) (obj1 (req "level_offset_too_high" Period_repr.encoding)) (function Level_offset_too_high offset -> Some offset | _ -> None) (fun offset -> Level_offset_too_high offset) type round_and_offset = {round : int32; offset : Period_repr.t} (** Complexity: O(log level_offset). *) let round_and_offset round_durations ~level_offset = let level_offset_in_seconds = Period_repr.to_seconds level_offset in (* We set the bound as 2^53 to prevent overflows when computing the variable [discr] for reasonable values of [first_round_duration] and [delay_increment_per_round]. This bound is derived by a rough approximation from the inequation [discr] < Int64.max_int. *) let overflow_bound = Int64.shift_right Int64.max_int 10 in if Compare.Int64.(overflow_bound < level_offset_in_seconds) then error (Level_offset_too_high level_offset) else let Durations.{first_round_duration; delay_increment_per_round} = round_durations in let first_round_duration = Period_repr.to_seconds first_round_duration in let delay_increment_per_round = Period_repr.to_seconds delay_increment_per_round in (* If [level_offset] is lower than the first round duration, then the solution straightforward. *) if Compare.Int64.(level_offset_in_seconds < first_round_duration) then ok {round = 0l; offset = level_offset} else let round = if Compare.Int64.(delay_increment_per_round = Int64.zero) then (* Case when delay_increment_per_round is zero and a simple linear solution exists. *) Int64.div level_offset_in_seconds first_round_duration else (* Case when the increment is non-negative and we look for the quadratic solution. *) let pow_2 n = Int64.mul n n in let double n = Int64.shift_left n 1 in let times_8 n = Int64.shift_left n 3 in let half n = Int64.shift_right n 1 in (* The integer square root is implemented using the Newton-Raphson method. For any integer N, the convergence within the neighborhood of √N is ensured within log2 (N) steps. *) let sqrt (n : int64) = let x0 = ref (half n) in if Compare.Int64.(!x0 > 1L) then ( let x1 = ref (half (Int64.add !x0 (Int64.div n !x0))) in while Compare.Int64.(!x1 < !x0) do x0 := !x1 ; x1 := half (Int64.add !x0 (Int64.div n !x0)) done ; !x0) else n in (* The idea is to solve the following equation in [round] and use its integer value: Σ_{k=0}^{round-1} round_duration(k) = level_offset After unfolding the sum and expanding terms, we obtain a quadratic equation: delay_increment_per_round × round² + (2 first_round_duration - delay_increment_per_round) × round - 2 level_offset = 0 From there, we compute the discriminant and the solution of the equation. Refer to https://gitlab.com/tezos/tezos/-/merge_requests/4009 for more explanations. *) let discr = Int64.add (pow_2 (Int64.sub (double first_round_duration) delay_increment_per_round)) (times_8 (Int64.mul delay_increment_per_round level_offset_in_seconds)) in Int64.div (Int64.add (Int64.sub delay_increment_per_round (double first_round_duration)) (sqrt discr)) (double delay_increment_per_round) in raw_level_offset_of_round round_durations ~round:(Int64.to_int32 round) >>? fun current_level_offset -> ok { round = Int64.to_int32 round; offset = Period_repr.of_seconds_exn (Int64.sub (Period_repr.to_seconds level_offset) current_level_offset); } (** Complexity: O(|round_durations|). *) let timestamp_of_round round_durations ~predecessor_timestamp ~predecessor_round ~round = let pred_round_duration = Durations.round_duration round_durations predecessor_round in (* First, the function computes when the current level l is supposed to start. This is given by adding to the timestamp of the round of predecessor level l-1 [predecessor_timestamp], the duration of its last round [predecessor_round]. *) Time_repr.(predecessor_timestamp +? pred_round_duration) >>? fun start_of_current_level -> (* Finally, we sum the durations of the rounds at the current level l until reaching current [round]. *) raw_level_offset_of_round round_durations ~round >>? fun level_offset -> let level_offset = Period_repr.of_seconds_exn level_offset in Time_repr.(start_of_current_level +? level_offset) (** Unlike [timestamp_of_round], this function gets the starting time of a given round, given the timestamp and the round of a proposal at the same level. We compute the starting time of [considered_round] from a given [round_durations] description, some [current_round], and its starting time [current_timestamp]. Complexity: O(|round_durations|). *) let timestamp_of_another_round_same_level round_durations ~current_timestamp ~current_round ~considered_round = raw_level_offset_of_round round_durations ~round:considered_round >>? fun target_offset -> raw_level_offset_of_round round_durations ~round:current_round >>? fun current_offset -> ok @@ Time_repr.of_seconds Int64.( add (sub (Time_repr.to_seconds current_timestamp) current_offset) target_offset) type error += | Round_of_past_timestamp of { provided_timestamp : Time.t; predecessor_timestamp : Time.t; predecessor_round : t; } let () = let open Data_encoding in register_error_kind `Permanent ~id:"round_of_past_timestamp" ~title:"Round_of_timestamp for past timestamp" ~description:"Provided timestamp is before the expected level start." ~pp:(fun ppf (provided_ts, predecessor_ts, round) -> Format.fprintf ppf "Provided timestamp (%a) is before the expected level start (computed \ based on predecessor_ts %a at round %a)." Time.pp_hum provided_ts Time.pp_hum predecessor_ts pp round) (obj3 (req "provided_timestamp" Time.encoding) (req "predecessor_timestamp" Time.encoding) (req "predecessor_round" encoding)) (function | Round_of_past_timestamp {provided_timestamp; predecessor_timestamp; predecessor_round} -> Some (provided_timestamp, predecessor_timestamp, predecessor_round) | _ -> None) (fun (provided_timestamp, predecessor_timestamp, predecessor_round) -> Round_of_past_timestamp {provided_timestamp; predecessor_timestamp; predecessor_round}) let round_of_timestamp round_durations ~predecessor_timestamp ~predecessor_round ~timestamp = let round_duration = Durations.round_duration round_durations predecessor_round in Time_repr.(predecessor_timestamp +? round_duration) >>? fun start_of_current_level -> Period_repr.of_seconds (Time_repr.diff timestamp start_of_current_level) |> Error_monad.record_trace (Round_of_past_timestamp { predecessor_timestamp; provided_timestamp = timestamp; predecessor_round; }) >>? fun diff -> round_and_offset round_durations ~level_offset:diff >>? fun round_and_offset -> ok round_and_offset.round let level_offset_of_round round_durations ~round = raw_level_offset_of_round round_durations ~round >>? fun offset -> ok (Period_repr.of_seconds_exn offset) module Internals_for_test = struct type round_and_offset_raw = {round : round; offset : Period_repr.t} let round_and_offset round_durations ~level_offset = round_and_offset round_durations ~level_offset >|? fun v -> {round = v.round; offset = v.offset} end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>