package octez-libs
A package that contains multiple base libraries used by the Octez suite
Install
Dune Dependency
Authors
Maintainers
Sources
tezos-18.1.tar.gz
sha256=aa2f5bc99cc4ca2217c52a1af2a2cdfd3b383208cb859ca2e79ca0903396ca1d
sha512=d68bb3eb615e3dcccc845fddfc9901c95b3c6dc8e105e39522ce97637b1308a7fa7aa1d271351d5933febd7476b2819e1694f31198f1f0919681f1f9cc97cb3a
doc/src/octez-libs.crypto-dal/cryptobox.ml.html
Source file cryptobox.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
(*****************************************************************************) (* *) (* Open Source License *) (* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com> *) (* *) (* Permission is hereby granted, free of charge, to any person obtaining a *) (* copy of this software and associated documentation files (the "Software"),*) (* to deal in the Software without restriction, including without limitation *) (* the rights to use, copy, modify, merge, publish, distribute, sublicense, *) (* and/or sell copies of the Software, and to permit persons to whom the *) (* Software is furnished to do so, subject to the following conditions: *) (* *) (* The above copyright notice and this permission notice shall be included *) (* in all copies or substantial portions of the Software. *) (* *) (* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*) (* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *) (* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL *) (* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*) (* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING *) (* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER *) (* DEALINGS IN THE SOFTWARE. *) (* *) (*****************************************************************************) open Error_monad include Cryptobox_intf module Base58 = Tezos_crypto.Base58 module Srs_g1 = Octez_bls12_381_polynomial.Srs.Srs_g1 module Srs_g2 = Octez_bls12_381_polynomial.Srs.Srs_g2 type error += Failed_to_load_trusted_setup of string let () = register_error_kind `Permanent ~id:"dal.node.trusted_setup_loading_failed" ~title:"Trusted setup loading failed" ~description:"Trusted setup failed to load" ~pp:(fun ppf msg -> Format.fprintf ppf "Trusted setup failed to load: %s" msg) Data_encoding.(obj1 (req "msg" string)) (function | Failed_to_load_trusted_setup parameter -> Some parameter | _ -> None) (fun parameter -> Failed_to_load_trusted_setup parameter) [@@coverage off] type initialisation_parameters = {srs_g1 : Srs_g1.t; srs_g2 : Srs_g2.t} (* Initialisation parameters are supposed to be instantiated once. *) let initialisation_parameters = ref None type error += Dal_initialisation_twice let () = register_error_kind `Permanent ~id:"dal.node.initialisation_twice" ~title:"Initialisation_twice" ~description:"DAL parameters were initialised twice" ~pp:(fun ppf () -> Format.fprintf ppf "DAL parameters were initialised twice") Data_encoding.empty (function Dal_initialisation_twice -> Some () | _ -> None) (function () -> Dal_initialisation_twice) [@@coverage off] (* This function is expected to be called once. *) let load_parameters parameters = let open Result_syntax in match !initialisation_parameters with | None -> initialisation_parameters := Some parameters ; return_unit | Some _ -> fail [Dal_initialisation_twice] (* FIXME https://gitlab.com/tezos/tezos/-/issues/3400 An integrity check is run to ensure the validity of the files. *) let initialisation_parameters_from_files ~srs_g1_path ~srs_g2_path ~srs_size_log2 = let open Lwt_result_syntax in let len = 1 lsl srs_size_log2 in let to_bigstring ~path = let open Lwt_syntax in let* fd = Lwt_unix.openfile path [Unix.O_RDONLY] 0o440 in Lwt.finalize (fun () -> return (match Lwt_bytes.map_file ~fd:(Lwt_unix.unix_file_descr fd) ~shared:false () with | exception Unix.Unix_error (error_code, function_name, _) -> Error [ Failed_to_load_trusted_setup (Format.sprintf "%s: Unix.Unix_error: %s" function_name (Unix.error_message error_code)); ] | exception e -> Error [Failed_to_load_trusted_setup (Printexc.to_string e)] | res -> Ok res)) (fun () -> Lwt_unix.close fd) in let* srs_g1_bigstring = to_bigstring ~path:srs_g1_path in let* srs_g2_bigstring = to_bigstring ~path:srs_g2_path in match let open Result_syntax in let* srs_g1 = Srs_g1.of_bigstring srs_g1_bigstring ~len in let* srs_g2 = Srs_g2.of_bigstring srs_g2_bigstring ~len in return (srs_g1, srs_g2) with | Error (`End_of_file s) -> tzfail (Failed_to_load_trusted_setup ("EOF: " ^ s)) | Error (`Invalid_point p) -> tzfail (Failed_to_load_trusted_setup (Printf.sprintf "Invalid point %i" p)) | Ok (srs_g1, srs_g2) -> return {srs_g1; srs_g2} (* The srs is made of the initialisation_parameters and two well-choosen points. Building the srs from the initialisation parameters is almost cost-free. *) type srs = { raw : initialisation_parameters; kate_amortized_srs_g2_shards : Bls12_381.G2.t; kate_amortized_srs_g2_pages : Bls12_381.G2.t; } module Inner = struct (* Scalars are elements of the prime field Fr from BLS. *) module Scalar = Bls12_381.Fr module Polynomials = Octez_bls12_381_polynomial.Polynomial module G1_array = Octez_bls12_381_polynomial.G1_carray (* Operations on vector of scalars *) module Evaluations = Octez_bls12_381_polynomial.Evaluations (* Domains for the Fast Fourier Transform (FTT). *) module Domains = Octez_bls12_381_polynomial.Domain type slot = bytes type scalar = Scalar.t type polynomial = Polynomials.t type commitment = Bls12_381.G1.t type shard_proof = Bls12_381.G1.t type commitment_proof = Bls12_381.G1.t type page_proof = Bls12_381.G1.t type page = bytes type shard = {index : int; share : share} type shards_proofs_precomputation = scalar array * shard_proof array array type ('a, 'b) error_container = {given : 'a; expected : 'b} module Encoding = struct open Data_encoding let fr_encoding = conv Bls12_381.Fr.to_bytes Bls12_381.Fr.of_bytes_exn (Fixed.bytes Bls12_381.Fr.size_in_bytes) (* FIXME https://gitlab.com/tezos/tezos/-/issues/3391 The commitment is not bounded. *) let g1_encoding = conv Bls12_381.G1.to_compressed_bytes Bls12_381.G1.of_compressed_bytes_exn bytes let page_proof_encoding = g1_encoding let = array fr_encoding let shard_proof_encoding = g1_encoding let shard_encoding = conv (fun {index; } -> (index, share)) (fun (index, ) -> {index; share}) (tup2 int31 share_encoding) [@@coverage off] let shards_proofs_precomputation_encoding = tup2 (array fr_encoding) (array (array g1_encoding)) let error_container_encoding (given_encoding : 'a encoding) (expected_encoding : 'b encoding) : ('a, 'b) error_container encoding = conv (fun {given; expected} -> (given, expected)) (fun (given, expected) -> {given; expected}) (obj2 (req "given" given_encoding) (req "expected" expected_encoding)) end include Encoding module Commitment = struct type t = commitment type Base58.data += Data of t let zero = Bls12_381.G1.zero let equal = Bls12_381.G1.eq let commitment_to_bytes = Bls12_381.G1.to_compressed_bytes let commitment_of_bytes_opt = Bls12_381.G1.of_compressed_bytes_opt [@@coverage off] let commitment_of_bytes_exn bytes = match Bls12_381.G1.of_compressed_bytes_opt bytes with | None -> Format.kasprintf Stdlib.failwith "Unexpected data (DAL commitment)" | Some commitment -> commitment [@@coverage off] let commitment_size = Bls12_381.G1.compressed_size_in_bytes [@@coverage off] let to_string commitment = commitment_to_bytes commitment |> Bytes.to_string [@@coverage off] let of_string_opt str = commitment_of_bytes_opt (String.to_bytes str) [@@coverage off] let b58check_encoding = Base58.register_encoding ~prefix:Base58.Prefix.slot_header ~length:commitment_size ~to_raw:to_string ~of_raw:of_string_opt ~wrap:(fun x -> Data x) [@@coverage off] let raw_encoding = let open Data_encoding in conv commitment_to_bytes commitment_of_bytes_exn (Fixed.bytes commitment_size) [@@coverage off] (* TODO: https://gitlab.com/tezos/tezos/-/issues/5593 We could have a smarter compare eg. using lazy Data_encoding.compare that encodes the two values to bytes lazily and stops as soon as the values are detected to be not equal. *) let compare_commitments a b = (* We are obliged to compare commitments by casting to bytes because {!Bls12_381.G1} doesn't provide a compare function. *) if Bls12_381.G1.eq a b then 0 else Bytes.compare (Bls12_381.G1.to_bytes a) (Bls12_381.G1.to_bytes b) let compare = compare_commitments include Tezos_crypto.Helpers.Make (struct type t = commitment let name = "DAL_commitment" let title = "Commitment representation for the DAL" let b58check_encoding = b58check_encoding let raw_encoding = raw_encoding let compare = compare_commitments let equal = Bls12_381.G1.eq let hash _ = (* The commitment is not hashed. This is ensured by the function exposed. We only need the Base58 encoding and the rpc_arg. *) assert false [@@coverage off] let seeded_hash _ _ = (* Same argument. *) assert false [@@coverage off] end) let of_b58check = of_b58check end module Commitment_proof = struct let zero = Bls12_381.G1.zero let to_bytes = Bls12_381.G1.to_compressed_bytes let of_bytes_exn bytes = match Bls12_381.G1.of_compressed_bytes_opt bytes with | None -> Format.kasprintf Stdlib.failwith "Unexpected data (DAL commitment proof)" | Some proof -> proof [@@coverage off] let size = Bls12_381.G1.compressed_size_in_bytes let raw_encoding = let open Data_encoding in conv to_bytes of_bytes_exn (Fixed.bytes size) let encoding = raw_encoding end type error += Invalid_precomputation_hash of (string, string) error_container let () = register_error_kind `Permanent ~id:"dal.node.invalid_precomputation_hash" ~title:"Invalid_precomputation_hash" ~description:"Unexpected precomputation hash" ~pp:(fun ppf {given; expected} -> Format.fprintf ppf "Invalid precomputation hash: expected %s. Got %s" expected given) (Encoding.error_container_encoding Data_encoding.string Data_encoding.string) (function Invalid_precomputation_hash err -> Some err | _ -> None) (function err -> Invalid_precomputation_hash err) [@@coverage off] (* Number of bytes fitting in a Scalar.t. Since scalars are integer modulo r~2^255, we restrict ourselves to 248-bit integers (31 bytes). *) let scalar_bytes_amount = Scalar.size_in_bytes - 1 (* Builds group of nth roots of unity, a valid domain for the FFT. *) let make_domain n = Domains.build n type t = { redundancy_factor : int; slot_size : int; page_size : int; number_of_shards : int; (* Maximum length of the polynomial representation of a slot, also called [polynomial_length] in the comments. *) max_polynomial_length : int; (* Length of the erasure-encoded polynomial representation of a slot, also called [erasure_encoded_polynomial_length] in the comments. *) erasure_encoded_polynomial_length : int; domain_polynomial_length : Domains.t; (* Domain for the FFT on slots as polynomials to be erasure encoded. *) domain_2_times_polynomial_length : Domains.t; domain_erasure_encoded_polynomial_length : Domains.t; (* Domain for the FFT on erasure encoded slots (as polynomials). *) shard_length : int; (* Length of a shard in terms of scalar elements. *) pages_per_slot : int; (* Number of slot pages. *) page_length : int; page_length_domain : int; remaining_bytes : int; (* Log of the number of evaluations that constitute an erasure encoded polynomial. *) srs : srs; } (* The input is expected to be a positive integer. *) let is_power_of_two n = assert (n >= 0) ; n <> 0 && n land (n - 1) = 0 (* Return the powerset of {3,11,19}. *) let combinations_factors = let rec powerset = function | [] -> [[]] | x :: xs -> let ps = powerset xs in List.concat [ps; List.map (fun ss -> x :: ss) ps] in powerset [3; 11; 19] (* [select_fft_domain domain_size] selects a suitable domain for the FFT. The domain size [domain_size] is expected to be strictly positive. Return [(size, power_of_two, remainder)] such that: * If [domain_size > 1], then [size] is the smallest integer greater or equal to [domain_size] and is of the form 2^a * 3^b * 11^c * 19^d, where a ∈ ⟦0, 32⟧, b ∈ {0, 1}, c ∈ {0, 1}, d ∈ {0, 1}. * If [domain_size = 1], then [size = 2]. * [size = power_of_two * remainder], [power_of_two] is a power of two, and [remainder] is not divisible by 2. The function works as follows: each product of elements from an element of the powerset of {3,11,19} is multiplied by 2 until the product is greater than [domain_size]. *) let select_fft_domain (domain_size : int) : int * int * int = assert (domain_size > 0) ; (* {3,11,19} are small prime factors dividing [Scalar.order - 1], the order of the multiplicative group Fr\{0}. *) let order_multiplicative_group = Z.pred Scalar.order in assert ( List.for_all (fun x -> Z.(divisible order_multiplicative_group (of_int x))) [3; 11; 19]) ; (* This case is needed because the code in the else clause will return (1, 1, 1) and 1 is not a valid domain size. *) if domain_size = 1 then (2, 2, 1) else (* [domain_from_factors] computes the power of two to be used in the decomposition N = 2^k * factors >= domain_size where [factors] is an element of [combinations_factors]. *) let domain_from_factors (factors : int list) : int * int list = let prod_factors = List.fold_left ( * ) 1 factors in let rec get_next_power_of_two k = if prod_factors lsl k >= domain_size then 1 lsl k else get_next_power_of_two (k + 1) in let next_power_of_two = get_next_power_of_two 0 in let size = prod_factors * next_power_of_two in (size, next_power_of_two :: factors) in let candidate_domains = List.map domain_from_factors combinations_factors in (* The list contains at least an element: the next power of 2 of domain_size *) let domain_length, prime_factor_decomposition = List.fold_left min (List.hd candidate_domains) (List.tl candidate_domains) in let power_of_two = List.hd prime_factor_decomposition in let remainder_product = List.fold_left ( * ) 1 (List.tl prime_factor_decomposition) in (domain_length, power_of_two, remainder_product) let fft_aux ~dft ~fft ~fft_pfa size coefficients = (* domain_length = power_of_two * remainder_product *) let _domain_length, power_of_two, remainder_product = select_fft_domain size in if size = power_of_two || size = remainder_product then let domain = Domains.build size in (if is_power_of_two size then fft else dft) domain coefficients else let domain1 = Domains.build power_of_two in let domain2 = Domains.build remainder_product in fft_pfa ~domain1 ~domain2 coefficients let fft = fft_aux ~dft:Evaluations.dft ~fft:Evaluations.evaluation_fft ~fft_pfa:Evaluations.evaluation_fft_prime_factor_algorithm let ifft_inplace = fft_aux ~dft:Evaluations.idft ~fft:Evaluations.interpolation_fft ~fft_pfa:Evaluations.interpolation_fft_prime_factor_algorithm (* The page size is a power of two and thus not a multiple of [scalar_bytes_amount], hence the + 1 to account for the remainder of the division. *) let page_length ~page_size = Int.div page_size scalar_bytes_amount + 1 (* [slot_as_polynomial_length ~slot_size ~page_size] returns the length of the polynomial of maximal degree representing a slot of size [slot_size] with [slot_size / page_size] pages. The returned length thus depends on the number of pages. *) let slot_as_polynomial_length ~slot_size ~page_size = let page_length = page_length ~page_size in let page_length_domain, _, _ = select_fft_domain page_length in slot_size / page_size * page_length_domain let ensure_validity ~slot_size ~page_size ~erasure_encoded_polynomial_length ~max_polynomial_length ~redundancy_factor ~number_of_shards ~shard_length ~srs_g1_length ~srs_g2_length = let open Result_syntax in let assert_result condition error_message = if not condition then fail (`Fail (error_message ())) else return_unit in let* () = assert_result (is_power_of_two slot_size) (* According to the specification the length of a slot are in MiB *) (fun () -> Format.asprintf "Slot size is expected to be a power of 2. Given: %d" slot_size) in let* () = assert_result (is_power_of_two page_size) (* According to the specification the lengths of a page are in MiB *) (fun () -> Format.asprintf "Page size is expected to be a power of 2. Given: %d" page_size) in let* () = assert_result (is_power_of_two redundancy_factor && redundancy_factor >= 2) (* The redundancy factor should be a power of 2 so that n is a power of 2 for proper FFT sizing. The variable [polynomial_length] is assumed to be a power of 2 as the output of [slot_as_polynomial_length]. *) (fun () -> Format.asprintf "Redundancy factor is expected to be a power of 2 and greater than \ 2. Given: %d" redundancy_factor) in (* At this point [erasure_encoded_polynomial_length] is a power of 2, and [erasure_encoded_polynomial_length > max_polynomial_length]. *) let* () = assert_result (page_size >= 32 && page_size < slot_size) (* The size of a page must be greater than 31 bytes (32 > 31 is the next power of two), the size in bytes of a scalar element, and strictly less than the slot size. *) (fun () -> Format.asprintf "Page size is expected to be greater than '32' and strictly less \ than the slot_size '%d'. Got: %d" slot_size page_size) in let max_two_adicity_log = 32 in let two_adicity_log = snd Z.(remove (of_int erasure_encoded_polynomial_length) (of_int 2)) in let* () = assert_result (two_adicity_log <= max_two_adicity_log) (* The 2-adicity of [erasure_encoded_polynomial_length] must be at most 2^32, the size of the biggest subgroup of 2^i roots of unity in the multiplicative group of Fr, because the FFTs operate on such groups. *) (fun () -> Format.asprintf "Slot size (%d) and/or redundancy factor (%d) is/are too high: \ expected 2-adicity of erasure_encoded_polynomial_length (%d) to \ be at most 2^%d, got: 2^%d" slot_size redundancy_factor erasure_encoded_polynomial_length max_two_adicity_log two_adicity_log) in let* () = assert_result (erasure_encoded_polynomial_length mod number_of_shards == 0 && number_of_shards < erasure_encoded_polynomial_length) (* The number of shards must divide n, so [number_of_shards <= erasure_encoded_polynomial_length]. Moreover, the inequality is strict because if [number_of_shards = erasure_encoded_polynomial_length], the domains for the FFT contain only one element and we cannot build FFT domains with only one element. Given that [erasure_encoded_polynomial_length] is a power of two, it follows that the maximum number of shards is [erasure_encoded_polynomial_length/2]. *) (fun () -> Format.asprintf "The number of shards must divide, and not be equal to %d. For the \ given parameter, the maximum number of shards is %d. Got: %d." erasure_encoded_polynomial_length (erasure_encoded_polynomial_length / 2) number_of_shards) in let* () = assert_result (shard_length < max_polynomial_length) (* Since shard_length = n / number_of_shards, we obtain (all quantities are positive integers): shard_length < k => n / number_of_shards < k => n / k < number_of_shards => redundancy_factor < number_of_shards since number_of_shards is a power of 2 the minimum value for number_of_shards is 2 * redundancy_factor. *) (fun () -> Format.asprintf "For the given parameters, the minimum number of shards is %d. Got \ %d." (redundancy_factor * 2) number_of_shards) in let* () = assert_result (max_polynomial_length <= srs_g1_length) (* The committed polynomials have degree t.max_polynomial_length - 1 at most, so t.max_polynomial_length coefficients. *) (fun () -> Format.asprintf "SRS on G1 size is too small. Expected more than %d. Got %d" max_polynomial_length srs_g1_length) in assert_result (let shard_length = erasure_encoded_polynomial_length / number_of_shards in let srs_g2_expected_length = max max_polynomial_length shard_length + 1 in srs_g2_expected_length <= srs_g2_length) (fun () -> Format.asprintf "SRS on G2 size is too small. Expected more than %d. Got %d" max_polynomial_length srs_g2_length) type parameters = Dal_config.parameters = { redundancy_factor : int; page_size : int; slot_size : int; number_of_shards : int; } let parameters_encoding = Dal_config.parameters_encoding let pages_per_slot {slot_size; page_size; _} = slot_size / page_size (* Error cases of this functions are not encapsulated into `tzresult` for modularity reasons. *) let make ({redundancy_factor; slot_size; page_size; number_of_shards} as parameters) = let open Result_syntax in let max_polynomial_length = slot_as_polynomial_length ~slot_size ~page_size in let erasure_encoded_polynomial_length = redundancy_factor * max_polynomial_length in let shard_length = erasure_encoded_polynomial_length / number_of_shards in let* raw = match !initialisation_parameters with | None -> fail (`Fail "Dal_cryptobox.make: DAL was not initialised.") | Some srs -> return srs in let* () = ensure_validity ~slot_size ~page_size ~erasure_encoded_polynomial_length ~max_polynomial_length ~redundancy_factor ~number_of_shards ~shard_length ~srs_g1_length:(Srs_g1.size raw.srs_g1) ~srs_g2_length:(Srs_g2.size raw.srs_g2) in let page_length = page_length ~page_size in let page_length_domain, _, _ = select_fft_domain page_length in let srs = { raw; kate_amortized_srs_g2_shards = Srs_g2.get raw.srs_g2 shard_length; kate_amortized_srs_g2_pages = Srs_g2.get raw.srs_g2 page_length_domain; } in return { redundancy_factor; slot_size; page_size; number_of_shards; max_polynomial_length; erasure_encoded_polynomial_length; domain_polynomial_length = make_domain max_polynomial_length; domain_2_times_polynomial_length = make_domain (2 * max_polynomial_length); domain_erasure_encoded_polynomial_length = make_domain erasure_encoded_polynomial_length; shard_length; pages_per_slot = pages_per_slot parameters; page_length; page_length_domain; remaining_bytes = page_size mod scalar_bytes_amount; srs; } let parameters ({redundancy_factor; slot_size; page_size; number_of_shards; _} : t) = {redundancy_factor; slot_size; page_size; number_of_shards} [@@coverage off] let polynomial_degree = Polynomials.degree let polynomial_evaluate = Polynomials.evaluate (* [polynomials_multiplication d ps] computes the product of the polynomials [ps]. The degree of the resulting product must be strictly less than the size of the domain [d]. Runtime is [O(n log n)] where [n = Domains.length d]. *) let polynomials_product d ps = let evaluations = List.map (fft d) ps in ifft_inplace d (Evaluations.mul_c ~evaluations ()) (* We encode by pages of [page_size] bytes each. The pages are arranged in cosets to produce batched KZG proofs [https://www.iacr.org/archive/asiacrypt2010/6477178/6477178.pdf] using the technique described in https://eprint.iacr.org/2023/033. *) let polynomial_from_slot (t : t) slot = (* Expects the length of the byte sequence to equal the slot size. This can be achieved by adding some padding with null bytes to the byte sequence if the length is strictly less than the slot size, or truncate it if the length is strictly greater than the slot size. *) if Bytes.length slot <> t.slot_size then Error (`Slot_wrong_size (Printf.sprintf "message must be %d bytes long" t.slot_size)) else let offset = ref 0 in let coefficients = Array.init t.max_polynomial_length (fun _ -> Scalar.(copy zero)) in (* A slot is subdivided into contiguous segments, called pages. The length of a page divides the slot size, that is: [t.page_size * t.pages_per_slot = t.slot_size] We parse the slot page by page. *) for page = 0 to t.pages_per_slot - 1 do (* A permutation (so a bijection) is then applied to the elements from a page. The code applies the permutation to a scalar element just after it is read from the page, but it is easier to picture it as two successive steps: 1. a serialization phase where pages are converted to sequences of scalar elements, which is injective: if two outputs for two slots are equal, then the slots are equal since we’re just splitting a page into chunks of [scalar_bytes_amount] bytes and a last one of [t.remaining_bytes] bytes. Parse the byte sequence slot = page_0 ... page_{t.pages_per_slot-1} page by page by chunks of [scalar_bytes_amount], or [t.remaining_bytes] for the last page chunk. to obtain the vector of length [polynomial_length = t.page_length * t.pages_per_slot] (chunk p_i^j standing for i-th chunk of page j): [ p_0^0 p_1^0 ... p_{page_length-1}^0 .... p_0^{t.pages_per_slot-1} ... p_{page_length-1}^{t.pages_per_slot-1}] 2. then apply the permutation, reindexing the page elements so that their indices correspond to the appropriate coset. [ p_0^0 p_0^1 ... p_0^{t.pages_per_slot-1} ... p_{page_length-1}^0 p_{page_length-1}^1 ... p_{t.page_length-1}^{t.pages_per_slot-1}] For a primitive k-th root of unity, the group generated by w, <w>, can be split into cosets <w> = Disjoint union_{j=0, ..., t.pages_per_slot - 1} w^j W where W = { w^{t.pages_per_slot * i} }_{i=0, ..., t.page_length - 1}. This way, the indices of the coefficients for each page j=0, ..., t.pages_per_slot-1 coincide with the indices of the elements of the cosets (w^j W). Indeed, the coefficients of the elements of w^j W are {i * t.pages_per_slot + j}_{i=0, ..., t.page_length-1}. *) for elt = 0 to t.page_length - 2 do (* [!offset >= t.slot_size] because we don't want to read past the buffer [slot] bounds. *) if !offset >= t.slot_size then () else let dst = Bytes.create scalar_bytes_amount in Bytes.blit slot !offset dst 0 scalar_bytes_amount ; offset := !offset + scalar_bytes_amount ; (* Apply the permutation. *) coefficients.((elt * t.pages_per_slot) + page) <- Scalar.of_bytes_exn dst done ; let dst = Bytes.create t.remaining_bytes in Bytes.blit slot !offset dst 0 t.remaining_bytes ; offset := !offset + t.remaining_bytes ; (* Apply the permutation. *) coefficients.(((t.page_length - 1) * t.pages_per_slot) + page) <- Scalar.of_bytes_exn dst done ; (* The resulting vector is then interpolated. Polynomial interpolation is a linear bijection (as a ring isomorphism) between k-tuples of scalar elements and polynomials of degree < k with coefficients in the scalar field. Thus [polynomial_from_slot] is an injection from slots to polynomials (as composition preserves injectivity). *) Ok (ifft_inplace t.max_polynomial_length (Evaluations.of_array (t.max_polynomial_length - 1, coefficients))) (* [polynomial_to_slot] is the left-inverse function of [polynomial_from_slot]. *) let polynomial_to_slot t p = (* The last operation of [polynomial_from_slot] is the interpolation, so we undo it with an evaluation on the same domain [t.domain_polynomial_length]. *) let evaluations = fft t.max_polynomial_length p in let slot = Bytes.make t.slot_size '\x00' in let offset = ref 0 in (* Reverse permutation from [polynomial_from_slot]. *) for page = 0 to t.pages_per_slot - 1 do for elt = 0 to t.page_length - 2 do let idx = (elt * t.pages_per_slot) + page in let coeff = Scalar.to_bytes (Evaluations.get evaluations idx) in Bytes.blit coeff 0 slot !offset scalar_bytes_amount ; offset := !offset + scalar_bytes_amount done ; let idx = ((t.page_length - 1) * t.pages_per_slot) + page in let coeff = Scalar.to_bytes (Evaluations.get evaluations idx) in Bytes.blit coeff 0 slot !offset t.remaining_bytes ; offset := !offset + t.remaining_bytes done ; slot (* Encoding a message P = (P_0, ... ,P_{k-1}) amounts to evaluate its associated polynomial P(x)=sum_{i=0}^{k-1} P_i x^i at the evaluation points [t.domain_erasure_encoded_polynomial_length]. This can be achieved with an n-points discrete Fourier transform supported by the [Scalar] field in time O(n log n). *) let encode t p = Evaluations.to_array (fft t.erasure_encoded_polynomial_length p) (* The shards are arranged in cosets to produce batches of KZG proofs for the shards efficiently. The domain of evaluation <w> is split into cosets: <w> = Disjoint union_{i in ⟦0, t.number_of_shards-1⟧} W_i, where W_0 = {w^{t.number_of_shards * j}}_{j in ⟦0, t.shard_length-1⟧} and W_i = w^i W_0 (|W_0|=t.shard_length). *) let shards_from_polynomial t p = let codeword = encode t p in let rec loop index seq = if index < 0 then seq else (* For each shard index [index], a [share] consists of the elements from [codeword] of indices w^index W_0. A shard consists of its [index] and associated [share]. *) let = Array.init t.shard_length (fun _ -> Scalar.(copy zero)) in for j = 0 to t.shard_length - 1 do share.(j) <- codeword.((t.number_of_shards * j) + index) done ; loop (index - 1) (Seq.cons {index; share} seq) in loop (t.number_of_shards - 1) Seq.empty module ShardSet = Set.Make (struct type t = shard let compare a b = Int.compare a.index b.index end) let t = (* FIXME: https://gitlab.com/tezos/tezos/-/issues/4289 Improve shard size computation *) let = t.erasure_encoded_polynomial_length / t.number_of_shards in (share_scalar_len * Scalar.size_in_bytes) + 4 (* Let w be a primitive [t.erasure_encoded_polynomial_length]-th root of unity, where [t.max_polynomial_length] and [t.erasure_encoded_polynomial_length = t.redundancy_factor * t.max_polynomial_length] divide [Scalar.order - 1]. Let F be a finite field, and in this context we use the prime field [Scalar]. We can decode a codeword c from RS(n, k, (w^i)_i) ≔ { (P(w^i))_{i in ⟦0, n-1⟧} | P in F[x] /\ deg P < k } with at least k components of c. By decode we mean finding the underlying message represented by the polynomial P such that c=(P(w^i))_{i in ⟦0, n-1⟧} with at least k components of c. Without loss of generality, let c̃ = (c_0, ..., c_{k-1}) be the received codeword with erasures, i.e., the first k components of a codeword. We can retrieve the original message with any k components of c thanks to the Lagrange interpolation polynomial P(x) defined as follows, where the x_i=w^i are the evaluation points of c̃: P(x) = sum_{i=0}^{k-1} c_i prod_{j=0, j != i}^{k-1} (x-x_j)/(x_i - x_j). As detailed in https://arxiv.org/pdf/0907.1788v1.pdf, the idea is to rewrite P(x) as a product of two polynomials A(x) and B(x) so that the convolution theorem allows us to recover P(x) using FFTs in O(n log n). Asymptotic complexity is O(n log n). *) let polynomial_from_shards t shards = let shards = (* We always consider the first k codeword vector components, the ShardSet allows collecting distinct indices. [Seq.take] doesn't raise any exceptions as t.max_polynomial_length / t.shard_length is (strictly) positive. [t.max_polynomial_length / t.shard_length] is strictly less than [t.number_of_shards]. Indeed, [t.shard_length = t.erasure_encoded_polynomial_length / t.number_of_shards] where [t.erasure_encoded_polynomial_length = t.max_polynomial_length * t.redundancy_factor] and [t.redundancy_factor > 1]. Thus, [t.max_polynomial_length / t.shard_length = t.number_of_shards / t.redundancy_factor < t.number_of_shards]. Here, all variables are positive integers, and [t.redundancy_factor] divides [t.number_of_shards], [t.number_of_shards] divides [t.erasure_encoded_polynomial_length]. *) Seq.take (t.max_polynomial_length / t.shard_length) shards |> ShardSet.of_seq in (* There should be [t.max_polynomial_length / t.shard_length] distinct shard indices. *) if t.max_polynomial_length / t.shard_length > ShardSet.cardinal shards then Error (`Not_enough_shards (Printf.sprintf "there must be at least %d shards to decode" (t.max_polynomial_length / t.shard_length))) else if ShardSet.exists (fun {; _} -> Array.length share <> t.shard_length) shards then Error (`Invalid_shard_length (Printf.sprintf "At least one shard of invalid length: expected length %d." t.shard_length)) else if ShardSet.exists (fun {index; _} -> index >= t.number_of_shards || index < 0) shards then Error (`Shard_index_out_of_range (Printf.sprintf "At least one shard index out of range: expected indices within \ the range [%d, %d]." 0 (t.number_of_shards - 1))) else (* 1. Computing A(x) = prod_{i=0}^{k-1} (x - x_i). Let A(x) ≔ prod_{i=0}^{k-1} (x-x_i) and A_i(x) ≔ prod_{j=0, j != i}^{k-1} (x-x_j). Let n_i ≔ c_i / A_i(x_i). The interpolation polynomial becomes: P(x) = A(x) sum_{i=0}^{k-1} c_i / ((x - x_i) A_i(x_i)) = A(x) sum_{i=0}^{k-1} n_i / (x - x_i). Note that A_i(x_i) != 0 by definition, so it is invertible in the [Scalar] field. *) (* The codewords are split into chunks called shards. For this purpose, let [t.shard_length=t.n/t.number_of_shards] be the length of a shard, and w a primitive n-th root of unity. The domain of evaluation <w> is then split into cosets: <w> = Disjoint union_{i in ⟦0, t.number_of_shards-1⟧} W_i, where W_0 = {w^{t.number_of_shards * j}}_{j in ⟦0, t.shard_length-1⟧} and W_i = w^i W_0 (|W_0|=t.shard_length). For a set of [t.max_polynomial_length / shard_length] shard indices Z subseteq {0, t.number_of_shards-1}, we reorganize the product A(x)=prod_{i=0}^{k-1} (x-x_i) into A(x) = prod_{i in Z, |Z|=t.max_polynomial_length/t.shard_length} Z_i where Z_i = prod_{w' in W_i} (x - w'). We notice that Z_0(x)=x^{|W_0|}-1 (as its roots are the elements of a group of order dividing |W_0|) entails Z_i(x)=x^{|W_0|}-w^{i*|W_0|} (multiplying all terms by a constant w^i in an integral domain), which is a sparse polynomial. This special form for Z_i(x) allows us to compute the product of the Z_i(x)s more efficiently with the [mul_xn] function, which multiplies an arbitrary polynomial P with a polynomial of the form Z_i(x) in time linear in (degree P + degree Z_i(x)). Thus A(x) = prod_{i in Z, |Z|=k/l} x^{|W_0|}-w^{i*|W_0|}. More formally: every element of W_i is of the form w^i w^{t.number_of_shards j} for j in ⟦0, t.shard_length-1⟧. Thus Z_i(w^i w^{s j}) = (w^i w^{s j})^{|W_0|}-w^{i*|W_0|} = (w^i)^{|W_0|} (w^{s j})^{|W_0|} - w^{i*|W_0|} = w^{i * |W_0|} * 1 - w^{i*|W_0|}=0. So every element of W_i is a root of Z_i(x). Moreover, Z_i(x) is a degree |W_0|=t.shard_length polynomial so has at most [t.shard_length] roots: Z_i(x)'s only roots are W_i [mul acc i] computes the polynomial acc * Z_i. *) let mul acc i = (* The complexity of [mul_xn] is linear in [Polynomials.degree acc + t.shard_length]. *) Polynomials.mul_xn acc t.shard_length (Scalar.negate (Domains.get t.domain_erasure_encoded_polynomial_length (i * t.shard_length))) in (* [partition_products seq] builds two polynomials whose product is A(x) from the input shards [seq]. *) let partition_products seq = ShardSet.fold (fun {index; _} (l, r) -> (mul r index, l)) seq (Polynomials.one, Polynomials.one) in (* The computation of [p1], [p2] has asymptotic complexity [O((t.max_polynomial_length + t.shard_length) * (t.max_polynomial_length / t.shard_length)) = O(t.max_polynomial_length * t.number_of_shards / t.redundancy_factor)]. It is the most costly operation of this function. *) let p1, p2 = partition_products shards in (* A(x) is the product of [p1] and [p2], and has degree [polynomial_length] *) assert ( Polynomials.degree p1 + Polynomials.degree p2 = t.max_polynomial_length) ; let a_poly = polynomials_product (2 * t.max_polynomial_length) [p1; p2] in assert (Polynomials.degree a_poly = t.max_polynomial_length) ; (* 2. Computing formal derivative of A(x). *) let a' = Polynomials.derivative a_poly in (* 3. Computing A'(w^i) = A_i(w^i). In order to compute A_i(x) more efficiently, we use the fact that the formal derivative A'(x) of A(x) satisfies for all i in ⟦0, k-1⟧: A'(x_i) = A_i(x_i). So we can compute (A_i(x_i))_i by evaluating A'(x) at the points (w^i)_i with an FFT. Indeed: A'(x) = (prod_{i=0}^{k-1} (x-x_i))' = sum_{i=0}^{k-1} (x-x_i)' prod_{j=0, j != i}^{k-1} (x-x_j) = sum_{j=0}^{k-1} A_j(x). So A'(x_i) = sum_{j=0}^{k-1} A_j(x_i) = A_i(x_i) as the other polynomials A_j(x) have x_i as root. *) let eval_a' = fft t.erasure_encoded_polynomial_length a' in (* 4. Computing N(x) ≔ sum_{i=0}^{k-1} n_i / x_i x^i where n_i ≔ c_i/A_i(x_i) Writing the fraction 1 / (x_i-x) = sum_{j=0}^infty x^j / (x_i^{j+1}) as a formal power series, we obtain P(x) / A(x) = sum_{i=0}^{k-1} n_i / (x-x_i) mod x^k = -sum_{i=0}^{k-1} [sum_{j=0}^{k-1} n_i / (x_i^{j+1}) x^j] = -sum_{i=0}^{k-1} N(w^{-i}) x^i where N(x) ≔ sum_{i=0}^{k-1} n_i / x_i x^i. *) let compute_n t eval_a' shards = let n_poly = Array.init t.erasure_encoded_polynomial_length (fun _ -> Scalar.(copy zero)) in ShardSet.iter (fun {index; } -> for j = 0 to Array.length share - 1 do let c_i = share.(j) in let i = (t.number_of_shards * j) + index in let x_i = Domains.get t.domain_erasure_encoded_polynomial_length i in let tmp = Evaluations.get eval_a' i in Scalar.mul_inplace tmp tmp x_i ; (* The call below never fails, so we don't catch exceptions. Indeed, [tmp = A_i(x_i)] is a product of nonzero elements and so is itself nonzero (thus invertible). See point 1. *) Scalar.inverse_exn_inplace tmp tmp ; Scalar.mul_inplace tmp tmp c_i ; n_poly.(i) <- tmp done) shards ; Evaluations.of_array (t.erasure_encoded_polynomial_length - 1, n_poly) in let n_poly = compute_n t eval_a' shards in (* 5. Computing B(x). B(x) = P(x) / A(x) = -sum_{i=0}^{k-1} N(w^{-i}) x^i. B(x) is thus given by the first k components of -n * IFFT_n(N). *) let b = Polynomials.truncate ~len:t.max_polynomial_length (ifft_inplace t.erasure_encoded_polynomial_length n_poly) in Polynomials.mul_by_scalar_inplace b Scalar.(negate (of_int t.erasure_encoded_polynomial_length)) b ; (* 6. Computing Lagrange interpolation polynomial P(x). The product is given by the convolution theorem: P = A * B = IFFT_{2k}(FFT_{2k}(A) o FFT_{2k}(B)) where o is the pairwise product. *) let p = polynomials_product (2 * t.max_polynomial_length) [a_poly; b] in (* P has degree [<= max_polynomial_length - 1] so [<= max_polynomial_length] coefficients. *) Ok (Polynomials.truncate ~len:t.max_polynomial_length p) let commit t p = let degree = Polynomials.degree p in let srs_g1_size = Srs_g1.size t.srs.raw.srs_g1 in if degree >= srs_g1_size then Error (`Invalid_degree_strictly_less_than_expected {given = degree; expected = srs_g1_size}) else Ok (Srs_g1.pippenger t.srs.raw.srs_g1 p) let pp_commit_error fmt (`Invalid_degree_strictly_less_than_expected {given; expected}) = Format.fprintf fmt "Invalid degree: expecting input polynomial to commit function to have a \ degree strictly less than %d. Got %d." expected given let string_of_commit_error err = Format.asprintf "%a" pp_commit_error err (* p(X) of degree n. Max degree that can be committed: d, which is also the SRS's length - 1. We take d = t.max_polynomial_length - 1 since we don't want to commit polynomials with degree greater than polynomials to be erasure-encoded. We consider the bilinear groups (G_1, G_2, G_T) with G_1=<g> and G_2=<h>. - Commit (p X^{d-n}) such that deg (p X^{d-n}) = d the max degree that can be committed - Verify: checks if e(commit(p), commit(X^{d-n})) = e(commit(p X^{d-n}), h) using the commitments for p and p X^{d-n}, and computing the commitment for X^{d-n} on G_2. *) (* Proves that degree(p) < t.max_polynomial_length *) (* FIXME https://gitlab.com/tezos/tezos/-/issues/4192 Generalize this function to pass the slot_size in parameter. *) let prove_commitment (t : t) p = let max_allowed_committed_poly_degree = t.max_polynomial_length - 1 in let max_committable_degree = Srs_g1.size t.srs.raw.srs_g1 - 1 in let offset_monomial_degree = max_committable_degree - max_allowed_committed_poly_degree in (* Note: this reallocates a buffer of size (Srs_g1.size t.srs.raw.srs_g1) (2^21 elements in practice), so roughly 100MB. We can get rid of the allocation by giving an offset for the SRS in Pippenger. *) let p_with_offset = Polynomials.mul_xn p offset_monomial_degree Scalar.(copy zero) in (* proof = commit(p X^offset_monomial_degree), with deg p < t.max_polynomial_length *) commit t p_with_offset (* Verifies that the degree of the committed polynomial is < t.max_polynomial_length *) let verify_commitment (t : t) cm proof = let max_allowed_committed_poly_degree = t.max_polynomial_length - 1 in let max_committable_degree = Srs_g1.size t.srs.raw.srs_g1 - 1 in let offset_monomial_degree = max_committable_degree - max_allowed_committed_poly_degree in let committed_offset_monomial = (* This [get] cannot raise since [offset_monomial_degree <= t.max_polynomial_length <= Srs_g2.size t.srs.raw.srs_g2]. *) Srs_g2.get t.srs.raw.srs_g2 offset_monomial_degree in let open Bls12_381 in (* checking that cm * committed_offset_monomial = proof *) Pairing.pairing_check [(cm, committed_offset_monomial); (proof, G2.(negate (copy one)))] let diff_next_power_of_two x = (1 lsl Z.log2up (Z.of_int x)) - x (* Notations ========= [x]_1 (resp. [x]_2) is a shorthand for x.g where - [x] is a scalar element of type [Scalar.t] - [g] is a generator of the subgroup [Bls12_381.G1] (resp. [Bls12_381.G2]) - ( . ) is the elliptic curve scalar multiplication in the subgroup [Bls12_381.G1] (resp. [Bls12_381.G2]) The SRS (Structure Reference String) is defined as: ([1]_1, [τ]_1, [τ^2]_1, [τ^3]_1, ..., [τ^{Srs_g1.length t.srs.raw.srs_g1 - 1}]_1) where τ is secret. e : [Bls12_381.G1] * [Bls12_381.G2] → [Bls12_381.GT] is a pairing (bilinear, non-degenerate map such that e(g1, g2) = gT where G1=<g1>, G2=<g2>, GT=<gT>). Multi-reveals ============= This feature is described in the KZG extended paper under section 3.4 as batch opening https://link.springer.com/chapter/10.1007/978-3-642-17373-8_11 on arbitrary points. The paper https://eprint.iacr.org/2023/033 shows how to commit and verify quickly when the points form cosets of a group of roots of unity. For n dividing [Scalar.order - 1], let w be a primitive n-th root of unity. For l dividing n, let z=w^{n/l} be a primitive l-th root of unity and Z=<z>. For i=0, ..., n/l - 1, the proof of the evaluations of P(x) at the l points w^i Z is the KZG commitment to the quotient of the euclidean division of P(x) by the polynomial x^l - w^{i*l} whose only roots are w^i Z. In other words, given the euclidean division P(x)=(x^l-w^{i*l}) * q_i(x) + r_{i}(x), deg r(x) < l, the proof is π_i = [q_i(τ)]_1. Opening at one point corresponds to the case l=1 where r_{i}(x)=P(w^i). To verify the proof, we gather the alleged evaluations of P(x) at the points w^i Z. From these possibly correct evaluations, we can construct an alleged remainder r_{i}(x) by computing the inverse DFT on the domain w^i Z, as r_{i}(x)=P(x) on this domain, and as r_{i}(x) is determined by its evaluations at l distinct points. We then check e(c-[r_i(τ)]_1, g_2) ?= e(π, [τ^l]_2 - [w^{i*l}]_2). Multiple multi-reveals ====================== We now wish to reveal not on the domain W=<w>, but on several subdomains: the n/l>1 cosets w^i W_0 of l elements each. The committed polynomial P(x) has degree k-1 where k corresponds to the dimension of the Reed-Solomon code (as a vector subspace of dimension k of F^n). We present the result from https://eprint.iacr.org/2023/033, which assumes the size of the domains n and of their cosets l to be powers of two for correct FFT sizes. Computing the proofs for all such cosets would cost n/l euclidean divisions and multi-exponentiations. Even though the euclidean division by x^l-w^{i*l} is linear in the degree of the committed polynomial, as well as the multi-exponentiation thanks to the Pippenger algorithm (See https://cr.yp.to/papers/pippenger.pdf), computing all proofs leads to a complexity O(n/l * k). It turns out the proofs for the cosets are related, so all proofs can be computed in time O(n/l log (n/l)). Again, for i=0, ..., n/l-1, given the euclidean division P(x)=(x^l-w^{i*l}) q_i(x) + r_i(x), deg r_i(x) < l, the proofs to be computed are π_i ≔ [q_i(τ)]_1. We denote d=deg P, m the next power of 2 of (d + 1), and set P_m, P_{m-1}, ..., P_{d+1}=0. For our purposes we further assume l | m, l < m so that z ≔ w^l a primitive n/l-th root of unity. The floor designates here the truncated division, where terms x^i for i<0 are dropped: q_i(x) = (P(x) - r_i(x)) / (x^l-w^{i*l}) = floor((P(x)-r_i(x)) / (x^l-w^{i*l})) = floor(P(x)/(x^l-w^{i*l})) since deg r_i < l = floor(sum_{k=0}^infty P(x)/(x^{(k+1)*l}) w^{k*i*l} (formal power series of 1/(x^l+c)) = sum_{k=0}^{m/l-1} floor(P(x)/(x^{(k+1)*l})) z^{i*k}. So: q_i(x) = sum_{k=0}^{m/l-1} (P_m x^{m-(k+1)*l} + P_{m-1}x^{m-(k+1)*l-1} + ... + P_{(k+1)*l+1}x + P_{(k+1)*l}) z^{ik}. If l <= d < 2l, then the powers of z are absent of the quotient: q_i(x) = P_l + P_{l+1} x + ... + P_d x^{d-l}. In this case, all proofs are equal since their value doesn't depend on [i]. Thus, π_i = [q_i(x)]_1 = sum_{k=0}^{m/l-1} (P_m[τ^{m-(k+1)*l}] + P_{m-1}[τ^{m-(k+1)*l-1}] + ... + P_{(k+1)*l+1}[τ] + P_{(k+1)*l}) z^{i*k}. Letting - for 0 <= k <= m/l, h_{k} ≔ sum_{j=k*l}^{m} f_j[τ^{j-k*l}] - for m/l < k <= n/l, h_k ≔ 0, we obtain π_i = sum_{k=0}^{n/l-1} h_{k+1} z^{i*k}. So by definition π=(π_0, ..., π_{n/l-1}) is the EC-DFT_z of the vector (h_1, ..., h_{n/l}) in F^{n/l} ( * ). Now, let's address the computation of the coefficients of interest h_k for k=1, ..., n/l. To this end, the authors of https://eprint.iacr.org/2023/033 observe that the computation of the h_k's can be decomposed into the computation of the l "offset" sums: forall j=0, ...,l-1, h_{k,j} = P_{m-j}[τ^{m-k*l-j}] + P_{m-l-j}[τ^{m-(k+1)*l-j}] + ... + P_{(m-j) % l + kl}[τ^{(m-j) % l}]. So the desired coefficients can then be obtained with h_k=sum_{j=0}^{l-1} h_{k,j}. This decomposition of the calculation allows the l vectors (h_{1,j}, ..., h_{floor((m-j)/l), j}) for j=0, ..., l-1 to be computed with l Toeplitz matrix-vector multiplications: (h_{1,j} h_{2,j} ... h_{floor((m-j)/l) - 1, j} h_{floor((m-j)/l), j})^T = |P_{m-j} P_{m-l-j} P_{m-2*l-j} ... P_{(m-j)%l+2*l} P_{(m-j)%l+l} | |0 P_{m-j} P_{m-l-j} ... P_{(m-j)%l+3*l} P_{(m-j)%l+2*l} | |0 0 P_{m-j} ... P_{(m-j)%l+4*l} P_{(m-j)%l+3*l} | |. . . . . . | |. . . . . . | |. . . . . . | |......................................................................| |0 0 0 ... P_{m-j} P_{m-l-j} | |0 0 0 ... 0 P_{m-j} | * (τ^{m-l-j} τ^{m-2*l-j} ... τ^{(m-j)%l+l} τ^{(m-j)%l})^T a || b is the concatenation of a and b. We can extend this Toeplitz matrix to form a circulant matrix whose columns are shifted versions of the vector c=P_{m-j} || 0^{floor((m-j)/l)-1} || P_{(m-j)%l+l} ... P_{m-j-l}. We can then compute circulant matrix-vector multiplication with the FFT. See this presentation from Kyle Kloster, student at Purdue University: https://www.youtube.com/watch?v=w0peHpfFVpc. Given the euclidean divisions m-j = q*l+r, 0 <= r < l for j=0, ...,l-1: 1. Compute l EC-FFTs over G_1: forall j=0, ...,l-1, s_j=EC-FFT_{2m/l}(srs_{m-j-l} srs_{m-j-2*l} srs_{m-j-3*l} ... srs_{m-j-q*l=r} || 0^{2m/l - floor((m-j)/l)}). The above calculation can be done once per trusted setup and can thus be cached. 2. Compute l FFTs over the [Scalar] field: forall j=0, ..., l-1: P'_j = FFT_{2m/l}(P_{m-j} || 0^{q+2*padding+1} || P_{r+l} P_{r+2l} ... P_{r+(q-1)l=m-j-l} || 0^{2m/l- (2*q+2*padding+1)}) where [q = floor ((m-j)/l) = quotient] and [padding] is the difference between [quotient] and the next power of two of [quotient]. 3. Then compute {h}=(h_k)_{k in ⟦1, n/l⟧} with circulant matrix-vector multiplication via FFT: h = sum_{j=0}^{l-1} (h_{1,j} ... h_{floor((m-j)/l), j} || 0^{2m/l- floor((m-j)/l)}) = sum_{j=0}^{l-1}EC-IFFT_{2m/l}(P'_j o_{G_1} s_j) = EC-IFFT_{2m/l} (sum_{j=0}^{l-1} (P_j o_{G_1} s_j)) where o_{G_1} is the pairwise product for vectors with components in G_1. 4. The first n/l coefficients is the result of the multiplication by the Toeplitz vector (with a bit of zero padding starting from the m/l-th coefficient): let's call this vector h'. The n/l KZG proofs are given by π=EC-FFT_{n/l}(h') following the observation ( * ). Complexity of multiple multi-reveals ==================================== For the preprocessing part (step 1), we count l EC-FFTs on G_1, so the asymptotic complexity of the step is O(l * (m/l) log (m/l))=O(m log(m/l)). For the KZG proofs generation part (steps 2 to 4), we count l FFTs on the scalar field F, two EC-FFTs on G_1, and l * 2m/l elliptic curve scalar multiplications in G_1: the runtime complexity is O(l * T_{F}(m/l) + T_{G_1}(n/l) + m), where T_{F} and T_{G_1} represent the runtime cost of the FFT and EC-FFT. Both have the same complexity, even though the latter hides a bigger constant (log of scalar size in bits, here log 256) due to the elliptic curve scalar multiplication. Let's recall that l is in our application the length of a shard, n is the length of the erasure code, α its redundancy factor and m ≈ k is the dimension of the erasure code. Calling s the number of shards, we obtain l = n/s = α*k/s. The runtime of the precomputation part can be rewritten as O(k * log (s/α)). And the computation of the n/l KZG proofs becomes O(k * log (s/α) + s * log s). This explains why the algorithm is more efficient with bigger erasure code redundancies α, especially the precomputation part as it performs EC-FFTs. For our purposes the length of a shard s << k, so the bottleneck is the pointwise scalar multiplication in G_1. *) (* Step 1, returns the pair made of the vectors s_j and the [domain] of length [2 * m / l = 2 * t.max_polynomial_length / t.shard_size] used for the computation of the s_j. *) let preprocess_multiple_multi_reveals t = (* The length of a coset [t.shard_length] divides the domain length [t.max_polynomial_length]. This is because [t.shard_length] divides [t.erasure_encoded_polynomial_length], [t.max_polynomial_length] divides [t.erasure_encoded_polynomial_length] and [t.max_polynomial_length > t.shard_length] (see why [m > 2l] above, where [m = t.max_polynomial_length] and [l = t.shard_length] here). *) assert (t.max_polynomial_length mod t.shard_length = 0) ; let domain_length = 2 * t.max_polynomial_length / t.shard_length in let domain = Domains.build domain_length in let srs = t.srs.raw.srs_g1 in (* Computes points = srs_{m-j-l} srs_{m-j-2l} srs_{m-j-3l} ... srs_{m-j-ql=r} || 0^{2m/l - floor((m-j)/l)}, s_j = EC-FFT_{2m/l}(points). *) let s_j j = (* According to the documentation of [( / )], "x / y is the greatest integer less than or equal to the real quotient of x by y". Thus it equals [floor (x /. y)]. *) let quotient = (t.max_polynomial_length - j) / t.shard_length in let points = G1_array.init domain_length (fun i -> if i < quotient then Srs_g1.get srs (t.max_polynomial_length - j - ((i + 1) * t.shard_length)) else Bls12_381.G1.(copy zero)) in G1_array.evaluation_ecfft ~domain ~points in (domain, Array.init t.shard_length s_j) (* [multiple_multi_reveals t preprocess coefficients] returns the proofs for each of the [t.number_of_shards] shards. Implements the "Multiple multi-reveals" section above. *) let multiple_multi_reveals t ~preprocess:(domain, sj) ~coefficients : shard_proof array = (* [t.max_polynomial_length > l] where [l = t.shard_length]. *) assert (t.shard_length < t.max_polynomial_length) ; (* Step 2. *) let domain_length = Domains.length domain in let h_j j = let remainder = (t.max_polynomial_length - j) mod t.shard_length in let quotient = (t.max_polynomial_length - j) / t.shard_length in let padding = diff_next_power_of_two quotient in (* points = P_{m-j} || 0^{q+2*padding+1} || P_{r+l} P_{r+2l} ... P_{r+(q-1)l=m-j-l} || 0^{2m/l- (2*q+2*padding+1)} where [q = floor ((m-j)/l) = quotient]. *) let points = Polynomials.init domain_length (fun i -> let idx = remainder + ((i - (quotient + (2 * padding))) * t.shard_length) in if i = 0 then Scalar.copy coefficients.(t.max_polynomial_length - j) else if i <= quotient + (2 * padding) || idx > t.max_polynomial_length (* The second inequality is here in the case [t.max_polynomial_length = 2*t.shard_length] thus [domain_length = 2*t.max_polynomial_length/t.shard_length=4] and [padding=0]. In this case, either [quotient = 2] thus [points = P_{m-j} 0 0 P_{r+l=m-j-l}], or [quotient = 1] thus [points] = P_{m-j} 0 P_{m-j} 0. *) then Scalar.(copy zero) else Scalar.copy coefficients.(idx)) in (* FFT of step 2. *) Evaluations.evaluation_fft domain points in (* Pairwise product of step 3. *) let evaluations = Array.init t.shard_length h_j in let h_j = G1_array.mul_arrays ~evaluations ~arrays:sj in (* Sum of step 3. *) let sum = h_j.(0) in for i = 1 to t.shard_length - 1 do G1_array.add_arrays_inplace sum h_j.(i) done ; (* Step 3. Toeplitz matrix-vector multiplication *) G1_array.interpolation_ecfft_inplace ~domain ~points:sum ; (* Keep first n / l coefficients *) let len = Domains.length domain / 2 in let points = G1_array.sub sum ~off:0 ~len in (* Step 4. *) let domain = Domains.build t.number_of_shards in G1_array.(to_array (evaluation_ecfft ~domain ~points)) (* [interpolation_poly root domain evaluations] returns the unique polynomial P of degree [< Domains.length domain] verifying P(root * domain[i]) = evaluations[i]. Requires: - [(Array.length evaluations = Domains.length domain)] *) let interpolation_poly ~root ~domain ~evaluations = assert (Array.length evaluations = Domains.length domain) ; let size = Domains.length domain in let evaluations = ifft_inplace size (Evaluations.of_array (size - 1, evaluations)) in (* Computes root_inverse = 1/root. *) let root_inverse = Scalar.inverse_exn root in (* Computes evaluations[i] = evaluations[i] * root_inverse^i. *) snd (Polynomials.fold_left_map (fun root_pow_inverse coefficient -> ( Scalar.mul root_pow_inverse root_inverse, Scalar.mul coefficient root_pow_inverse )) Scalar.(copy one) evaluations) (* [verify t commitment srs_point domain root evaluations proof] verifies that P(root * domain.(i)) = evaluations.(i), where - [P = commit t s] for some slot [s] - [l := Array.length evaluations = Domains.length domain] - [srs_point = Srs_g2.get t.srs.raw.srs_g2 l] - [root = w^i] where [w] is a primitive [erasure_encoded_polynomial_length]-th root of unity for [l] dividing [erasure_encoded_polynomial_length] - [domain = (1, z, z^2, ..., z^{l - 1})] where [z = w^{n/l}] is a primitive [l]-th root of unity Implements the "Multi-reveals" section above. *) let verify t ~commitment ~srs_point ~domain ~root ~evaluations ~proof = let open Bls12_381 in let open Result_syntax in (* Compute r_i(x). *) let remainder = interpolation_poly ~root ~domain ~evaluations in (* Compute [r_i(τ)]_1. *) let* commitment_remainder = commit t remainder in (* Compute [w^{i * l}]. *) let root_pow = Scalar.pow root (Z.of_int (Domains.length domain)) in (* Compute [τ^l]_2 - [w^{i * l}]_2). *) let commit_srs_point_minus_root_pow = G2.(add srs_point (negate (mul (copy one) root_pow))) in (* Compute [r_i(τ)]_1-c. *) let diff_commits = G1.(add commitment_remainder (negate commitment)) in (* Checks e(c-[r_i(τ)]_1, g_2) ?= e(π, [τ^l]_2 - [w^{i * l}]_2) by checking [0]_1 ?= -e(c-[r_i(τ)]_1, g_2) + e(π, [τ^l]_2 - [w^{i * l}]_2) = e([r_i(τ)]_1-c, g_2) + e(π, [τ^l]_2 - [w^{i * l}]_2). *) Ok (Pairing.pairing_check [ (diff_commits, G2.(copy one)); (proof, commit_srs_point_minus_root_pow); ]) let save_precompute_shards_proofs precomputation ~filename = protect (fun () -> Lwt_io.with_file ~mode:Output filename (fun chan -> let open Lwt_result_syntax in let str = Data_encoding.Binary.to_string_exn Encoding.shards_proofs_precomputation_encoding precomputation in let*! () = Lwt_io.write chan str in return_unit)) let hash_precomputation precomputation = let encoding = Data_encoding.Binary.to_bytes_exn Encoding.shards_proofs_precomputation_encoding precomputation in Tezos_crypto.Blake2B.hash_bytes [encoding] let load_precompute_shards_proofs ~hash ~filename () = protect (fun () -> Lwt_io.with_file ~mode:Input filename (fun chan -> let open Lwt_result_syntax in let*! str = Lwt_io.read chan in let precomputation = Data_encoding.Binary.of_string_exn Encoding.shards_proofs_precomputation_encoding str in let* () = match hash with | Some given -> let expected = hash_precomputation precomputation in if Tezos_crypto.Blake2B.equal given expected then return_unit else tzfail (Invalid_precomputation_hash { given = Tezos_crypto.Blake2B.to_string given; expected = Tezos_crypto.Blake2B.to_string expected; }) | None -> return_unit in return precomputation)) let precompute_shards_proofs t = (* Precomputes step. 1 of multiple multi-reveals. *) let domain, precomputation = preprocess_multiple_multi_reveals t in ( Octez_bls12_381_polynomial.Domain.to_array domain, Array.map G1_array.to_array precomputation ) let prove_shards t ~precomputation:(domain, precomp) ~polynomial = let setup = (Domains.of_array domain, Array.map G1_array.of_array precomp) in (* Resizing input polynomial [p] to obtain an array of length [t.max_polynomial_length + 1]. *) let coefficients = Array.init (t.max_polynomial_length + 1) (fun _ -> Scalar.(copy zero)) in let p_length = Polynomials.degree polynomial + 1 in let p = Polynomials.to_dense_coefficients polynomial in Array.blit p 0 coefficients 0 p_length ; multiple_multi_reveals t ~preprocess:setup ~coefficients let verify_shard (t : t) commitment {index = shard_index; share = evaluations} proof = if shard_index < 0 || shard_index >= t.number_of_shards then Error (`Shard_index_out_of_range (Printf.sprintf "Shard index out of range: got index %d, expected index within \ range [%d, %d]." shard_index 0 (t.number_of_shards - 1))) else let expected_shard_length = t.shard_length in let got_shard_length = Array.length evaluations in if expected_shard_length <> got_shard_length then Error `Shard_length_mismatch else let root = Domains.get t.domain_erasure_encoded_polynomial_length shard_index in let domain = Domains.build t.shard_length in let srs_point = t.srs.kate_amortized_srs_g2_shards in match verify t ~commitment ~srs_point ~domain ~root ~evaluations ~proof with | Ok true -> Ok () | Ok false -> Error `Invalid_shard | Error e -> Error e let prove_page t p page_index = if page_index < 0 || page_index >= t.pages_per_slot then Error `Page_index_out_of_range else let wi = Domains.get t.domain_polynomial_length page_index in let quotient, _ = Polynomials.division_xn p t.page_length_domain Scalar.(negate (pow wi (Z.of_int t.page_length_domain))) in commit t quotient (* Parses the [slot_page] to get the evaluations that it contains. The evaluation points are given by the [slot_page_index]. *) let verify_page t commitment ~page_index page proof = if page_index < 0 || page_index >= t.pages_per_slot then Error `Page_index_out_of_range else let expected_page_length = t.page_size in let got_page_length = Bytes.length page in if expected_page_length <> got_page_length then Error `Page_length_mismatch else let domain = Domains.build t.page_length_domain in let evaluations = Array.init t.page_length_domain (function | i when i < t.page_length - 1 -> (* Parse the [page] by chunks of [scalar_bytes_amount] bytes. These chunks are interpreted as [Scalar.t] elements and stored in [evaluations]. *) let dst = Bytes.create scalar_bytes_amount in Bytes.blit page (i * scalar_bytes_amount) dst 0 scalar_bytes_amount ; Scalar.of_bytes_exn dst | i when i = t.page_length - 1 -> (* Store the remaining bytes in the last nonzero coefficient of evaluations. *) let dst = Bytes.create t.remaining_bytes in Bytes.blit page (i * scalar_bytes_amount) dst 0 t.remaining_bytes ; Scalar.of_bytes_exn dst | _ -> Scalar.(copy zero)) in let root = Domains.get t.domain_polynomial_length page_index in match verify t ~commitment ~srs_point:t.srs.kate_amortized_srs_g2_pages ~domain ~root ~evaluations ~proof with | Ok true -> Ok () | Ok false -> Error `Invalid_page | Error e -> Error e end include Inner module Verifier = Inner module Internal_for_tests = struct let parameters_initialisation {slot_size; page_size; number_of_shards; redundancy_factor; _} = let length = slot_as_polynomial_length ~slot_size ~page_size in let secret = Bls12_381.Fr.of_string "20812168509434597367146703229805575690060615791308155437936410982393987532344" in let srs_g1 = Srs_g1.generate_insecure length secret in (* The error is caught during the instantiation through [make]. *) let erasure_encoded_polynomial_length = redundancy_factor * length in let evaluations_per_proof = match erasure_encoded_polynomial_length / number_of_shards with | exception Invalid_argument _ -> 0 | x -> x in (* The cryptobox will read at indices `size`, `1 lsl evaluations_per_proof_log` and `page_length` so we take the max + 1. Since `page_length < size`, we can remove the `page_length from the max. *) let srs_g2 = Srs_g2.generate_insecure (max length evaluations_per_proof + 1) secret in {srs_g1; srs_g2} let load_parameters parameters = initialisation_parameters := Some parameters let make_dummy_shards (t : t) ~state = Random.set_state state ; let rec loop index seq = if index = t.number_of_shards then seq else let = Array.init (t.shard_length + 1 + Random.int 100) (fun _ -> Scalar.(random ~state ())) in loop (index + 1) (Seq.cons {index; share} seq) in loop 0 Seq.empty let polynomials_equal = Polynomials.equal let page_proof_equal = Bls12_381.G1.eq let alter_proof proof = Bls12_381.G1.(add proof one) let alter_page_proof (proof : page_proof) = alter_proof proof let alter_shard_proof (proof : shard_proof) = alter_proof proof let alter_commitment_proof (proof : commitment_proof) = alter_proof proof let minimum_number_of_shards_to_reconstruct_slot (t : t) = t.number_of_shards / t.redundancy_factor let select_fft_domain = select_fft_domain let precomputation_equal ((d1, a1) : shards_proofs_precomputation) ((d2, a2) : shards_proofs_precomputation) = Array.for_all2 Scalar.eq d1 d2 && Array.for_all2 (Array.for_all2 Bls12_381.G1.eq) a1 a2 let reset_initialisation_parameters () = initialisation_parameters := None let dummy_commitment ~state () = Bls12_381.G1.random ~state () let dummy_page_proof ~state () = Bls12_381.G1.random ~state () let dummy_shard_proof ~state () = Bls12_381.G1.random ~state () let make_dummy_shard ~state ~index ~length = {index; share = Array.init length (fun _ -> Scalar.(random ~state ()))} let number_of_pages t = t.pages_per_slot let shard_length t = t.shard_length let dummy_polynomial ~state ~degree = let rec nonzero () = let res = Bls12_381.Fr.random ~state () in if Bls12_381.Fr.is_zero res then nonzero () else res in Polynomials.init (degree + 1) (fun i -> if i = degree then nonzero () else Bls12_381.Fr.random ~state ()) let srs_size_g1 t = Srs_g1.size t.srs.raw.srs_g1 let = encoded_share_size let ensure_validity {redundancy_factor; slot_size; page_size; number_of_shards} = let max_polynomial_length = slot_as_polynomial_length ~slot_size ~page_size in let erasure_encoded_polynomial_length = redundancy_factor * max_polynomial_length in let shard_length = erasure_encoded_polynomial_length / number_of_shards in let open Result_syntax in (let* raw = match !initialisation_parameters with | None -> fail (`Fail "Dal_cryptobox.make: DAL was not initialisated.") | Some srs -> return srs in ensure_validity ~slot_size ~page_size ~erasure_encoded_polynomial_length ~max_polynomial_length ~redundancy_factor ~number_of_shards ~shard_length ~srs_g1_length:(Srs_g1.size raw.srs_g1) ~srs_g2_length:(Srs_g2.size raw.srs_g2)) |> function | Ok _ -> true | _ -> false end module Config = struct type t = Dal_config.t = { activated : bool; use_mock_srs_for_testing : parameters option; bootstrap_peers : string list; } let encoding : t Data_encoding.t = Dal_config.encoding let default = Dal_config.default let init_dal ~find_srs_files ?(srs_size_log2 = 21) dal_config = let open Lwt_result_syntax in if dal_config.activated then let* initialisation_parameters = match dal_config.use_mock_srs_for_testing with | Some parameters -> return (Internal_for_tests.parameters_initialisation parameters) | None -> let*? srs_g1_path, srs_g2_path = find_srs_files () in initialisation_parameters_from_files ~srs_g1_path ~srs_g2_path ~srs_size_log2 in Lwt.return (load_parameters initialisation_parameters) else return_unit end
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>