package tls
Transport Layer Security purely in OCaml
Install
Dune Dependency
Authors
Maintainers
Sources
tls-v0.15.2.tbz
sha256=b76371757249bbeabb12c333de4ea2a09c095767bdbbc83322538c0da1fc1e36
sha512=e6e089a853848e82647bc3f6ecaa3a95cdb559e50b7ad9d06064c1fd0c931b0e942ff0877c8066ec79b6b42a29512449ba1a5c6de1f1502cdbfc3397546f417c
doc/src/tls/engine.ml.html
Source file engine.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747
open Core open State type state = State.state type client_hello_errors = State.client_hello_errors type error = State.error type fatal = State.fatal type failure = State.failure [@@deriving sexp_of] let alert_of_authentication_failure = function | `LeafCertificateExpired _ -> Packet.CERTIFICATE_EXPIRED | _ -> Packet.BAD_CERTIFICATE let alert_of_error = function | `NoConfiguredVersions _ -> Packet.PROTOCOL_VERSION | `NoConfiguredCiphersuite _ -> Packet.HANDSHAKE_FAILURE | `NoConfiguredSignatureAlgorithm _ -> Packet.HANDSHAKE_FAILURE | `AuthenticationFailure err -> alert_of_authentication_failure err | `NoMatchingCertificateFound _ -> Packet.UNRECOGNIZED_NAME | `NoCertificateConfigured -> Packet.HANDSHAKE_FAILURE | `CouldntSelectCertificate -> Packet.HANDSHAKE_FAILURE let alert_of_fatal = function | `NoSecureRenegotiation -> Packet.HANDSHAKE_FAILURE | `NoSupportedGroup -> Packet.HANDSHAKE_FAILURE | `MACUnderflow -> Packet.BAD_RECORD_MAC | `MACMismatch -> Packet.BAD_RECORD_MAC | `RecordOverflow _ -> Packet.RECORD_OVERFLOW | `UnknownRecordVersion _ -> Packet.PROTOCOL_VERSION | `UnknownContentType _ -> Packet.UNEXPECTED_MESSAGE | `ReaderError (Reader.UnknownVersion _) -> Packet.PROTOCOL_VERSION | `ReaderError (Reader.TrailingBytes _) -> Packet.UNEXPECTED_MESSAGE | `ReaderError Reader.Underflow -> Packet.DECODE_ERROR | `ReaderError _ -> Packet.ILLEGAL_PARAMETER | `CannotHandleApplicationDataYet -> Packet.UNEXPECTED_MESSAGE | `NoHeartbeat -> Packet.UNEXPECTED_MESSAGE | `BadRecordVersion _ -> Packet.PROTOCOL_VERSION | `InvalidRenegotiation -> Packet.HANDSHAKE_FAILURE | `InvalidServerHello -> Packet.UNSUPPORTED_EXTENSION | `InvalidRenegotiationVersion _ -> Packet.HANDSHAKE_FAILURE | `NoCertificateReceived -> Packet.HANDSHAKE_FAILURE | `NoCertificateVerifyReceived -> Packet.HANDSHAKE_FAILURE | `NotRSACertificate -> Packet.BAD_CERTIFICATE | `InvalidCertificateUsage -> Packet.BAD_CERTIFICATE | `InvalidCertificateExtendedUsage -> Packet.BAD_CERTIFICATE | `NoVersions _ -> Packet.PROTOCOL_VERSION | `InsufficientDH -> Packet.INSUFFICIENT_SECURITY | `InvalidDH -> Packet.ILLEGAL_PARAMETER | `BadECDH _ -> Packet.ILLEGAL_PARAMETER | `BadFinished -> Packet.DECRYPT_ERROR | `HandshakeFragmentsNotEmpty -> Packet.HANDSHAKE_FAILURE | `InvalidSession -> Packet.HANDSHAKE_FAILURE | `UnexpectedCCS -> Packet.UNEXPECTED_MESSAGE | `UnexpectedHandshake _ -> Packet.UNEXPECTED_MESSAGE | `SignatureVerificationFailed _ -> Packet.HANDSHAKE_FAILURE | `SigningFailed _ -> Packet.HANDSHAKE_FAILURE | `KeyTooSmall -> Packet.INSUFFICIENT_SECURITY | `BadCertificateChain -> Packet.BAD_CERTIFICATE | `InvalidClientHello `NoSignatureAlgorithmsExtension | `InvalidClientHello `NoKeyShareExtension | `InvalidClientHello `NoSupportedGroupExtension -> Packet.MISSING_EXTENSION | `InvalidClientHello (`NotSetSupportedGroup _) | `InvalidClientHello (`NotSetKeyShare _) | `InvalidClientHello (`NotSubsetKeyShareSupportedGroup _) -> Packet.ILLEGAL_PARAMETER | `InvalidClientHello _ -> Packet.HANDSHAKE_FAILURE | `InappropriateFallback -> Packet.INAPPROPRIATE_FALLBACK | `NoApplicationProtocol -> Packet.NO_APPLICATION_PROTOCOL | `HelloRetryRequest -> Packet.HANDSHAKE_FAILURE (* TODO check *) | `InvalidMessage -> Packet.HANDSHAKE_FAILURE | `Toomany0rttbytes -> Packet.UNEXPECTED_MESSAGE | `MissingContentType -> Packet.UNEXPECTED_MESSAGE | `Downgrade12 | `Downgrade11 -> Packet.ILLEGAL_PARAMETER let alert_of_failure = function | `Error x -> alert_of_error x | `Fatal x -> alert_of_fatal x let string_of_failure = function | `Error (`AuthenticationFailure v) -> let s = Fmt.to_to_string X509.Validation.pp_validation_error v in "authentication failure: " ^ s | f -> Sexplib.Sexp.to_string_hum (sexp_of_failure f) type ret = ([ `Ok of state | `Eof | `Alert of Packet.alert_type ] * [ `Response of Cstruct.t option ] * [ `Data of Cstruct.t option ], failure * [ `Response of Cstruct.t ]) result let new_state config role = let handshake_state = match role with | `Client -> Client ClientInitial | `Server -> Server AwaitClientHello in let version = max_protocol_version Config.(config.protocol_versions) in let handshake = { session = [] ; protocol_version = version ; early_data_left = 0l ; machina = handshake_state ; config = config ; hs_fragment = Cstruct.create 0 ; } in { handshake = handshake ; decryptor = None ; encryptor = None ; fragment = Cstruct.create 0 ; } type raw_record = tls_hdr * Cstruct_sexp.t [@@deriving sexp_of] (* well-behaved pure encryptor *) let encrypt (version : tls_version) (st : crypto_state) ty buf = match st with | None -> (st, ty, buf) | Some ctx -> match version with | `TLS_1_3 -> (match ctx.cipher_st with | AEAD c -> let buf = let t = Cstruct.create 1 in Cstruct.set_uint8 t 0 (Packet.content_type_to_int ty) ; buf <+> t in let nonce = Crypto.aead_nonce c.nonce ctx.sequence in let adata = Crypto.adata_1_3 (Cstruct.length buf + Crypto.tag_len c.cipher) in let buf = Crypto.encrypt_aead ~cipher:c.cipher ~adata ~key:c.cipher_secret ~nonce buf in (Some { ctx with sequence = Int64.succ ctx.sequence }, Packet.APPLICATION_DATA, buf) | _ -> assert false) | _ -> let pseudo_hdr = let seq = ctx.sequence and ver = pair_of_tls_version version in Crypto.pseudo_header seq ty ver (Cstruct.length buf) in let to_encrypt mac mac_k = let signature = Crypto.mac mac mac_k pseudo_hdr buf in buf <+> signature in let c_st, enc = match ctx.cipher_st with | CBC c -> let enc iv = let to_encrypt = to_encrypt c.hmac c.hmac_secret in Crypto.encrypt_cbc ~cipher:c.cipher ~key:c.cipher_secret ~iv to_encrypt in ( match c.iv_mode with | Random_iv -> let iv = Mirage_crypto_rng.generate (Crypto.cbc_block c.cipher) in let m, _ = enc iv in (CBC c, iv <+> m) | Iv iv -> let m, iv' = enc iv in (CBC { c with iv_mode = Iv iv' }, m) ) | AEAD c -> match c.cipher with | ChaCha20_Poly1305 _ -> (* RFC 7905: no explicit nonce, instead TLS 1.3 construction is adapted *) let nonce = Crypto.aead_nonce c.nonce ctx.sequence in let msg = Crypto.encrypt_aead ~cipher:c.cipher ~key:c.cipher_secret ~nonce ~adata:pseudo_hdr buf in (AEAD c, msg) | _ -> let explicit_nonce = Crypto.sequence_buf ctx.sequence in let nonce = c.nonce <+> explicit_nonce in let msg = Crypto.encrypt_aead ~cipher:c.cipher ~key:c.cipher_secret ~nonce ~adata:pseudo_hdr buf in (AEAD c, explicit_nonce <+> msg) in (Some { sequence = Int64.succ ctx.sequence ; cipher_st = c_st }, ty, enc) (* well-behaved pure decryptor *) let verify_mac sequence mac mac_k ty ver decrypted = let macstart = Cstruct.length decrypted - Mirage_crypto.Hash.digest_size mac in let* () = guard (macstart >= 0) (`Fatal `MACUnderflow) in let (body, mmac) = Cstruct.split decrypted macstart in let cmac = let ver = pair_of_tls_version ver in let hdr = Crypto.pseudo_header sequence ty ver (Cstruct.length body) in Crypto.mac mac mac_k hdr body in let* () = guard (Cstruct.equal cmac mmac) (`Fatal `MACMismatch) in Ok body let decrypt ?(trial = false) (version : tls_version) (st : crypto_state) ty buf = let compute_mac seq mac mac_k buf = verify_mac seq mac mac_k ty version buf in (* hmac is computed in this failure branch from the encrypted data, in the successful branch it is decrypted - padding (which is smaller equal than encrypted data) *) (* This comment is borrowed from miTLS, but applies here as well: *) (* We implement standard mitigation for padding oracles. Still, we note a small timing leak here: The time to verify the mac is linear in the plaintext length. *) (* defense against http://lasecwww.epfl.ch/memo/memo_ssl.shtml 1) in https://www.openssl.org/~bodo/tls-cbc.txt *) let mask_decrypt_failure seq mac mac_k = let* _ = compute_mac seq mac mac_k buf in Error (`Fatal `MACMismatch) in let dec ctx = let seq = ctx.sequence in match ctx.cipher_st with | CBC c -> let dec iv buf = match Crypto.decrypt_cbc ~cipher:c.cipher ~key:c.cipher_secret ~iv buf with | None -> mask_decrypt_failure seq c.hmac c.hmac_secret | Some (dec, iv') -> let* msg = compute_mac seq c.hmac c.hmac_secret dec in Ok (msg, iv') in ( match c.iv_mode with | Iv iv -> let* msg, iv' = dec iv buf in Ok (CBC { c with iv_mode = Iv iv' }, msg) | Random_iv -> if Cstruct.length buf < Crypto.cbc_block c.cipher then Error (`Fatal `MACUnderflow) else let iv, buf = Cstruct.split buf (Crypto.cbc_block c.cipher) in let* msg, _ = dec iv buf in Ok (CBC c, msg) ) | AEAD c -> match c.cipher with | ChaCha20_Poly1305 _ -> (* RFC 7905: no explicit nonce, instead TLS 1.3 construction is adapted *) let adata = let ver = pair_of_tls_version version in Crypto.pseudo_header seq ty ver (Cstruct.length buf - Crypto.tag_len c.cipher) and nonce = Crypto.aead_nonce c.nonce seq in (match Crypto.decrypt_aead ~adata ~cipher:c.cipher ~key:c.cipher_secret ~nonce buf with | None -> Error (`Fatal `MACMismatch) | Some x -> Ok (AEAD c, x)) | _ -> let explicit_nonce_len = 8 in if Cstruct.length buf < explicit_nonce_len then Error (`Fatal `MACUnderflow) else let explicit_nonce, buf = Cstruct.split buf explicit_nonce_len in let adata = let ver = pair_of_tls_version version in Crypto.pseudo_header seq ty ver (Cstruct.length buf - Crypto.tag_len c.cipher) and nonce = c.nonce <+> explicit_nonce in match Crypto.decrypt_aead ~cipher:c.cipher ~key:c.cipher_secret ~nonce ~adata buf with | None -> Error (`Fatal `MACMismatch) | Some x -> Ok (AEAD c, x) in match st, version with | None, _ when ty = Packet.APPLICATION_DATA -> (* the server can end up in the situation: CH [+early_data +key_share] ; APP_DATA ----> <--- HRR [+key_share] (does not install a decryptor, early data now disallowed) CH [+key_share] -----> the APP_DATA above cannot be decrypted or used, so we drop it. *) Ok (None, Cstruct.empty, Packet.APPLICATION_DATA) | None, _ -> Ok (st, buf, ty) | Some ctx, `TLS_1_3 -> (match ty with | Packet.CHANGE_CIPHER_SPEC -> Ok (st, buf, ty) | Packet.APPLICATION_DATA -> (match ctx.cipher_st with | AEAD c -> let nonce = Crypto.aead_nonce c.nonce ctx.sequence in let unpad x = let rec eat = function | -1 -> Error (`Fatal `MissingContentType) | idx -> match Cstruct.get_uint8 x idx with | 0 -> eat (pred idx) | n -> match Packet.int_to_content_type n with | Some ct -> Ok (Cstruct.sub x 0 idx, ct) | None -> Error (`Fatal `MACUnderflow) (* TODO better error? *) in eat (pred (Cstruct.length x)) in let adata = Crypto.adata_1_3 (Cstruct.length buf) in (match Crypto.decrypt_aead ~adata ~cipher:c.cipher ~key:c.cipher_secret ~nonce buf with | None -> if trial then Ok (Some ctx, Cstruct.empty, Packet.APPLICATION_DATA) else Error (`Fatal `MACMismatch) | Some x -> let* data, ty = unpad x in Ok (Some { ctx with sequence = Int64.succ ctx.sequence }, data, ty)) | _ -> Error (`Fatal `InvalidMessage)) | _ -> Error (`Fatal `InvalidMessage)) | Some ctx, _ -> let* st', msg = dec ctx in let ctx' = { cipher_st = st' ; sequence = Int64.succ ctx.sequence } in Ok (Some ctx', msg, ty) (* party time *) let rec separate_records : Cstruct.t -> ((tls_hdr * Cstruct.t) list * Cstruct.t, failure) result = fun buf -> let open Reader in match parse_record buf with | Ok (`Fragment b) -> Ok ([], b) | Ok (`Record (packet, fragment)) -> let* tl, frag = separate_records fragment in Ok (packet :: tl, frag) | Error (Overflow x) -> Tracing.cs ~tag:"buf-in" buf ; Error (`Fatal (`RecordOverflow x)) | Error (UnknownVersion v) -> Tracing.cs ~tag:"buf-in" buf ; Error (`Fatal (`UnknownRecordVersion v)) | Error (UnknownContent c) -> Tracing.cs ~tag:"buf-in" buf ; Error (`Fatal (`UnknownContentType c)) | Error e -> Tracing.cs ~tag:"buf-in" buf ; Error (`Fatal (`ReaderError e)) let encrypt_records encryptor version records = let rec split = function | [] -> [] | (t1, a) :: xs when Cstruct.length a >= 1 lsl 14 -> let fst, snd = Cstruct.split a (1 lsl 14) in (t1, fst) :: split ((t1, snd) :: xs) | x::xs -> x :: split xs and crypt st = function | [] -> (st, []) | (ty, buf)::rs -> let (st, ty, enc) = encrypt version st ty buf in let (st, encs) = crypt st rs in (st, (ty, enc) :: encs) in crypt encryptor (split records) module Alert = struct open Packet let make ?level typ = (ALERT, Writer.assemble_alert ?level typ) let close_notify = make ~level:WARNING CLOSE_NOTIFY let handle buf = let* alert = map_reader_error (Reader.parse_alert buf) in let _, a_type = alert in Tracing.sexpf ~tag:"alert-in" ~f:sexp_of_tls_alert alert ; let err = match a_type with | CLOSE_NOTIFY -> `Eof | _ -> `Alert a_type in Tracing.sexpf ~tag:"alert-out" ~f:sexp_of_tls_alert (Packet.WARNING, Packet.CLOSE_NOTIFY) ; Ok (err, [`Record close_notify]) end let hs_can_handle_appdata s = (* When is a TLS session up for some application data? - initial handshake must be finished! - renegotiation must not be in progress --> thus only ok for Established - but ok if server sent a HelloRequest and can get first some appdata then ClientHello --> or converse: client sent ClientHello, waiting for ServerHello *) (* turns out, rules in 1.3 are slightly different -- server may send appdata after its first flight! this means in any observable state! (apart from when a HRR was sent) *) match s.machina with | Server13 AwaitClientHelloHRR13 -> false | Server Established | Server AwaitClientHelloRenegotiate | Server13 _ | Client Established | Client AwaitServerHelloRenegotiate _ | Client13 Established13 -> true | _ -> false let early_data s = match s.machina with | Server13 AwaitClientHelloHRR13 | Server13 (AwaitEndOfEarlyData13 _) | Server13 (AwaitClientFinished13 _) | Server13 (AwaitClientCertificate13 _) | Server13 (AwaitClientCertificateVerify13 _) -> true | _ -> false let rec separate_handshakes buf = match Reader.parse_handshake_frame buf with | None, rest -> Ok ([], rest) | Some hs, rest -> let* rt, frag = separate_handshakes rest in Ok (hs :: rt, frag) let handle_change_cipher_spec = function | Client cs -> Handshake_client.handle_change_cipher_spec cs | Server ss -> Handshake_server.handle_change_cipher_spec ss (* D.4: the client may send a CCS before its second flight (before second ClientHello or encrypted handshake flight) the server may send it immediately after its first handshake message (ServerHello or HelloRetryRequest) *) | Client13 (AwaitServerEncryptedExtensions13 _) | Client13 (AwaitServerHello13 _) | Server13 AwaitClientHelloHRR13 | Server13 (AwaitClientCertificate13 _) | Server13 (AwaitClientFinished13 _) -> (fun s _ -> Ok (s, [])) | _ -> (fun _ _ -> Error (`Fatal `UnexpectedCCS)) and handle_handshake = function | Client cs -> Handshake_client.handle_handshake cs | Server ss -> Handshake_server.handle_handshake ss | Client13 cs -> Handshake_client13.handle_handshake cs | Server13 ss -> Handshake_server13.handle_handshake ss let non_empty cs = if Cstruct.length cs = 0 then None else Some cs let handle_packet hs buf = function (* RFC 5246 -- 6.2.1.: Implementations MUST NOT send zero-length fragments of Handshake, Alert, or ChangeCipherSpec content types. Zero-length fragments of Application data MAY be sent as they are potentially useful as a traffic analysis countermeasure. *) | Packet.ALERT -> let* err, out = Alert.handle buf in Ok (hs, out, None, err) | Packet.APPLICATION_DATA -> if hs_can_handle_appdata hs || (early_data hs && Cstruct.length hs.hs_fragment = 0) then (Tracing.cs ~tag:"application-data-in" buf; Ok (hs, [], non_empty buf, `No_err)) else Error (`Fatal `CannotHandleApplicationDataYet) | Packet.CHANGE_CIPHER_SPEC -> let* hs, items = handle_change_cipher_spec hs.machina hs buf in Ok (hs, items, None, `No_err) | Packet.HANDSHAKE -> let* hss, hs_fragment = separate_handshakes (hs.hs_fragment <+> buf) in let hs = { hs with hs_fragment } in let* hs, items = List.fold_left (fun acc raw -> let* hs, items = acc in let* hs', items' = handle_handshake hs.machina hs raw in Ok (hs', items @ items')) (Ok (hs, [])) hss in Ok (hs, items, None, `No_err) | Packet.HEARTBEAT -> Error (`Fatal `NoHeartbeat) let decrement_early_data hs ty buf = let bytes left cipher = let count = Cstruct.length buf - fst (Ciphersuite.kn_13 (Ciphersuite.privprot13 cipher)) in let left' = Int32.sub left (Int32.of_int count) in if left' < 0l then Error (`Fatal `Toomany0rttbytes) else Ok left' in if ty = Packet.APPLICATION_DATA && early_data hs then let cipher = match hs.session with | `TLS13 sd::_ -> sd.ciphersuite13 | _ -> `AES_128_GCM_SHA256 (* TODO assert and ensure that all early_data states have a cipher *) in let* early_data_left = bytes hs.early_data_left cipher in Ok { hs with early_data_left } else Ok hs (* the main thingy *) let handle_raw_record state (hdr, buf as record : raw_record) = Tracing.sexpf ~tag:"record-in" ~f:sexp_of_raw_record record ; let hs = state.handshake in let version = hs.protocol_version in let* () = match hs.machina, version with | Client (AwaitServerHello _), _ -> Ok () | Server AwaitClientHello , _ -> Ok () | Server13 AwaitClientHelloHRR13, _ -> Ok () | _ , `TLS_1_3 -> guard (hdr.version = `TLS_1_2) (`Fatal (`BadRecordVersion hdr.version)) | _ , v -> guard (version_eq hdr.version v) (`Fatal (`BadRecordVersion hdr.version)) in let trial = match hs.machina with | Server13 (AwaitEndOfEarlyData13 _) | Server13 Established13 -> false | Server13 _ -> hs.early_data_left > 0l && Cstruct.length hs.hs_fragment = 0 | _ -> false in let* dec_st, dec, ty = decrypt ~trial version state.decryptor hdr.content_type buf in let* handshake = decrement_early_data hs ty buf in Tracing.sexpf ~tag:"frame-in" ~f:sexp_of_record (ty, dec) ; let* handshake, items, data, err = handle_packet handshake dec ty in let encryptor, decryptor, encs = List.fold_left (fun (enc, dec, es) -> function | `Change_enc enc' -> (Some enc', dec, es) | `Change_dec dec' -> (enc, Some dec', es) | `Record r -> Tracing.sexpf ~tag:"frame-out" ~f:sexp_of_record r ; let (enc', encbuf) = encrypt_records enc handshake.protocol_version [r] in (enc', dec, es @ encbuf)) (state.encryptor, dec_st, []) items in List.iter (Tracing.sexpf ~tag:"record-out" ~f:sexp_of_record) encs ; let state' = { state with handshake ; encryptor ; decryptor } in Ok (state', encs, data, err) let maybe_app a b = match a, b with | Some x, Some y -> Some (x <+> y) | Some x, None -> Some x | None , Some y -> Some y | None , None -> None let assemble_records (version : tls_version) rs = let version = match version with `TLS_1_3 -> `TLS_1_2 | x -> x in Cstruct.concat (List.map (Writer.assemble_hdr version) rs) (* main entry point *) let handle_tls state buf = Tracing.sexpf ~tag:"state-in" ~f:sexp_of_state state ; Tracing.cs ~tag:"wire-in" buf ; let rec handle_records st = function | [] -> Ok (st, [], None, `No_err) | r::rs -> let* r = handle_raw_record st r in match r with | st, raw_rs, data, `No_err -> let* st', raw_rs', data', err' = handle_records st rs in Ok (st', raw_rs @ raw_rs', maybe_app data data', err') | res -> Ok res in match let* in_records, fragment = separate_records (state.fragment <+> buf) in let* state', out_records, data, err = handle_records state in_records in let version = state'.handshake.protocol_version in let resp = match out_records with | [] -> None | _ -> let out = assemble_records version out_records in Tracing.cs ~tag:"wire-out" out ; Some out in Ok ({ state' with fragment }, resp, data, err) with | Ok (state, resp, data, err) -> let res = match err with | `Eof -> Tracing.sexpf ~tag:"eof-out" ~f:Sexplib.Conv.sexp_of_unit () ; `Eof | `Alert al -> Tracing.sexpf ~tag:"ok-alert-out" ~f:Packet.sexp_of_alert_type al ; `Alert al | `No_err -> (* Tracing.sexpf ~tag:"state-out" ~f:sexp_of_state state ; *) `Ok state in Ok (res, `Response resp, `Data data) | Error x -> let version = state.handshake.protocol_version in let alert = alert_of_failure x in let record = Alert.make alert in let _, enc = encrypt_records state.encryptor version [record] in let resp = assemble_records version enc in Tracing.sexpf ~tag:"fail-alert-out" ~f:sexp_of_tls_alert (Packet.FATAL, alert) ; Tracing.sexpf ~tag:"failure" ~f:sexp_of_failure x ; Error (x, `Response resp) let send_records (st : state) records = let version = st.handshake.protocol_version in List.iter (Tracing.sexpf ~tag:"frame-out" ~f:sexp_of_record) records ; let (encryptor, encs) = encrypt_records st.encryptor version records in List.iter (Tracing.sexpf ~tag:"record-out" ~f:sexp_of_record) encs ; let data = assemble_records version encs in Tracing.cs ~tag:"wire-out" data ; ({ st with encryptor }, data) (* utility for user *) let can_handle_appdata s = hs_can_handle_appdata s.handshake let handshake_in_progress s = match s.handshake.machina with | Client Established | Server Established -> false | Client13 Established13 | Server13 Established13 -> false | _ -> true (* another entry for user data *) let send_application_data st css = match can_handle_appdata st with | true -> Tracing.css ~tag:"application-data-out" css ; let datas = match st.encryptor with (* Mitigate implicit IV in CBC mode: prepend empty fragment *) | Some { cipher_st = CBC { iv_mode = Iv _ ; _ } ; _ } -> Cstruct.create 0 :: css | _ -> css in let ty = Packet.APPLICATION_DATA in let data = List.map (fun cs -> (ty, cs)) datas in Some (send_records st data) | false -> None let send_close_notify st = send_records st [Alert.close_notify] let reneg ?authenticator ?acceptable_cas ?cert st = let config = st.handshake.config in let config = match authenticator with | None -> config | Some auth -> Config.with_authenticator config auth in let config = match acceptable_cas with | None -> config | Some cas -> Config.with_acceptable_cas config cas in let config = match cert with | None -> config | Some cert -> Config.with_own_certificates config cert in let hs = { st.handshake with config } in match hs.machina with | Server Established -> ( match Handshake_server.hello_request hs with | Ok (handshake, [`Record hr]) -> Some (send_records { st with handshake } [hr]) | _ -> None ) | Client Established -> ( match Handshake_client.answer_hello_request hs with | Ok (handshake, [`Record ch]) -> Some (send_records { st with handshake } [ch]) | _ -> None ) | _ -> None let key_update ?(request = true) state = let* state', out = Handshake_common.output_key_update ~request state in let _, outbuf = send_records state [out] in Ok (state', outbuf) let client config = let config = Config.of_client config in let state = new_state config `Client in let dch, _version, secrets = Handshake_client.default_client_hello config in let ciphers, extensions = match config.Config.protocol_versions with (* from RFC 5746 section 3.3: Both the SSLv3 and TLS 1.0/TLS 1.1 specifications require implementations to ignore data following the ClientHello (i.e., extensions) if they do not understand it. However, some SSLv3 and TLS 1.0 implementations incorrectly fail the handshake in such a case. This means that clients that offer the "renegotiation_info" extension may encounter handshake failures. In order to enhance compatibility with such servers, this document defines a second signaling mechanism via a special Signaling Cipher Suite Value (SCSV) "TLS_EMPTY_RENEGOTIATION_INFO_SCSV", with code point {0x00, 0xFF}. This SCSV is not a true cipher suite (it does not correspond to any valid set of algorithms) and cannot be negotiated. Instead, it has the same semantics as an empty "renegotiation_info" extension, as described in the following sections. Because SSLv3 and TLS implementations reliably ignore unknown cipher suites, the SCSV may be safely sent to any server. *) | (_, `TLS_1_0) -> ([Packet.TLS_EMPTY_RENEGOTIATION_INFO_SCSV], []) | (`TLS_1_3, _) -> ([], []) | _ -> ([], [`SecureRenegotiation (Cstruct.create 0)]) in let client_hello = { dch with ciphersuites = dch.ciphersuites @ ciphers ; extensions = dch.extensions @ extensions } in let client_hello, ch, raw = match config.Config.cached_ticket, config.Config.ticket_cache with | None, _ | _, None -> let ch = ClientHello client_hello in client_hello, ch, Writer.assemble_handshake ch | Some (psk, epoch), Some cache -> let kex = `PskKeyExchangeModes [ Packet.PSK_KE_DHE ] in (* what next!? *) let now = cache.Config.timestamp () in (* TODO check lifetime! *) let obf_age = let span = Ptime.Span.to_float_s (Ptime.diff now psk.issued_at) in (* _in milliseconds_ *) let ms = int_of_float (span *. 1000.) in Int32.add psk.obfuscation (Int32.of_int ms) in let cipher = match Ciphersuite.ciphersuite_to_ciphersuite13 epoch.ciphersuite with | None -> assert false | Some c -> c in (* if all goes well, we can compute the binder key and embed into ch! *) let early_secret = Handshake_crypto13.(derive (empty cipher) psk.secret) in let binder_key = Handshake_crypto13.derive_secret early_secret "res binder" Cstruct.empty in let hash = Cstruct.create (Mirage_crypto.Hash.digest_size (Ciphersuite.hash13 cipher)) in let incomplete_psks = [ (psk.identifier, obf_age), hash ] in let ch' = { client_hello with extensions = client_hello.extensions @ [ kex ; `PreSharedKeys incomplete_psks ] } in let ch'_raw = Writer.assemble_handshake (ClientHello ch') in let binders_len = binders_len incomplete_psks in let ch_part = Cstruct.(sub ch'_raw 0 (length ch'_raw - binders_len)) in let binder = Handshake_crypto13.finished early_secret.hash binder_key ch_part in let blen = Cstruct.length binder in let prefix = Cstruct.create 3 in Cstruct.BE.set_uint16 prefix 0 (blen + 1) ; Cstruct.set_uint8 prefix 2 blen ; let raw = Cstruct.concat [ ch_part ; prefix ; binder ] in let psks = [(psk.identifier, obf_age), binder] in let client_hello' = { client_hello with extensions = client_hello.extensions @ [ kex ; `PreSharedKeys psks ] } in let ch' = ClientHello client_hello' in client_hello', ch', raw in let machina = AwaitServerHello (client_hello, secrets, [raw]) in (* from RFC5246, appendix E.1 TLS clients that wish to negotiate with older servers MAY send any value {03,XX} as the record layer version number. Typical values would be {03,00}, the lowest version number supported by the client, and the value of ClientHello.client_version. No single value will guarantee interoperability with all old servers, but this is a complex topic beyond the scope of this document. *) let version = min_protocol_version Config.(config.protocol_versions) in let handshake = { state.handshake with machina = Client machina ; protocol_version = version } in let state = { state with handshake } in Tracing.sexpf ~tag:"handshake-out" ~f:sexp_of_tls_handshake ch ; Tracing.sexpf ~tag:"state-out" ~f:sexp_of_state state ; send_records state [(Packet.HANDSHAKE, raw)] let server config = new_state Config.(of_server config) `Server type epoch = [ | `InitialEpoch | `Epoch of epoch_data ] [@@deriving sexp_of] let epoch state = match epoch_of_hs state.handshake with | None -> `InitialEpoch | Some e -> `Epoch e
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>